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Abstract The maximum allowable size of a spherical cos-
mic structure as a function of its mass is determined by the
maximum turn around radius RTA,max, the distance from its
center where the attraction on a radial test particle due to the
spherical mass is balanced with the repulsion due to the ambi-
ent dark energy. In this work, we extend the existing results
in several directions. (a) We first show that, for w �= −1, the
expression for RTA,max found earlier, using the cosmological
perturbation theory, can be derived using a static geometry
as well. (b) In the generic dark energy model with arbitrary
time dependent state parameter w(t), taking into account the
effect of inhomogeneities upon the dark energy as well, it is
shown that the data constrain w(t = today) > −2.3. (c) We
address the quintessence and the generalized Chaplygin gas
models, both of which are shown to predict structure sizes
consistent with observations.

1 Introduction and overview

Since the discovery of the accelerated expansion of our cur-
rent universe at the end of last century, the dark energy, along
with the cold dark matter have become the central themes in
the theory and applications of modern cosmology. The sim-
plest of the dark energy models is certainly a positive cos-
mological constant, � and the simplest model of the modern
universe is �-Cold Dark Matter (�CDM) model. �CDM
has so far passed with flying colors all cosmological obser-
vation tests [1,2], starting from the redshift of type Ia super-
novae, the Hubble rate, galaxy clustering, the microwave
background radiation and so on.1

1 For recent criticism, however, of the statistical significance of the
Supernovae Ia data see [3] and references therein.

a e-mail: sbhatta@iitrpr.ac.in
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Since the observed value of � ∼ O(10−52m−2) is tiny
compared to the inverse of the Planck length squared, it is
natural to expect that its effect would be observable at large
space-time scales only, as for instance imprinted in the light
coming from some high redshift supernovae or in the data for
the early universe. However, a novel potential local check of
the dark energy was proposed recently [4–6], pertaining to the
stability of large scale structures. The idea is simple, based
on the observation that the maximum size of an e.g. spheri-
cal bound structure should be the distance from its center at
which the attractive Newtonian force on a test mass due to
the spherical overdensity is balanced with the repulsion due
to the ambient dark energy. Beyond this distance, which was
called “maximum turnaround radius” and labeled RTA,max

a test particle cannot stay bound, but will be dragged away
by the antigravity effect of the dark energy. The same idea
was used in [7] to derive an upper bound on a hypothetical
at that time cosmological constant on the basis of the exis-
tence of galaxies. The next step is then to use RTA,max as an
observable to constrain the parameters of any cosmological
model of interest, by comparing its theoretical prediction for
RTA,max with the actual data.

For �CDM, in particular, the predicted value of RTA,max

for a spherical structure equals (3MG/�c2)1/3, the details
of which would be presented in the next sections. Figure 1 [4]
(see also references therein) shows the size versus mass of
some nearby large scale structures, together with the theoret-
ical prediction of the model. As is evident, for superclusters
as large as M � 1015M� the prediction of �CDM lies very
close from above, with the departure from the data being
roughly only about 10%! Thus, the �CDM model is abso-
lutely consistent with the stability of cosmic structures from
the maximum turn around perspective.2 It is worth noting
here that the structures we are looking into are very close to

2 Note in Fig. 1 that the Corona Borealis supercluster seems to have
a considerable effect due to non-sphericity. However, it may not be an
integral structure at all, but a giant binary connected by a filament like
structure; see [4,8] and the references therein.
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Fig. 1 Observed size versus mass plot for several nearby cosmic struc-
tures compared to the RTA,max predicted by �CDM (red line). The
dotted line represents the maximum departure due to non-sphericities.
(Taken from Ref. [4], © SISSA Medialab Srl. Reproduced by permis-
sion of IOP Publishing. All rights reserved.)

us (z � 1), and hence this is a local check or challenge to
the dark energy—the dark energy is at work right within the
structure itself.

After a certain structure decouples from the expansion of
the surrounding universe, it shrinks and virializes by redis-
tributing the kinetic energies and positions of its individ-
ual constituents [9] under the action of the attractive force
due to its mass, which is now dominant. Given that the pro-
cess of virialization of a structure typically enhances any
non-sphericity in its initial profile, a spherical model for a
structure is more appropriate when it is away from virializa-
tion. Furthermore, it was shown using the Press–Schechter
mass function in [6,10] that there exists a transitional mass
scale ∼1013M�, above which the structures are not virialized
today. Thus, in order to challenge a dark energy model using
the maximum size versus mass criterion, it is most effec-
tive to look into structures which lie above that transitional
mass scale. We refer our reader to [11] for a discussion of
the future evolution of the cosmic webs of such large masses
and to [12–14] for a discussion of the possible violation of
the maximum turn around bound by looking into the pecu-
liar velocity profiles of members of a given structure. We
further refer the reader to e.g. [15,16] on aspects of particle
motion in the black hole Schwarzschild–de Sitter space-time
relevant to the derivation of RTA,max in �CDM and to [17–
19] for effects of a positive � on astrophysical scenarios or
phenomena such as the accretion disks.

Despite the simplicity and the most overwhelming suc-
cesses of the �CDM model, it is well known that it suffers
from the so called “fine tuning of the cosmological constant”
problem, the fact that �, when interpreted and computed as
the vacuum energy density, most outrageously disagrees with
its actual observed value today [20]. Furthermore, it does not

provide any insight towards an explanation of the “coinci-
dence problem”, the fact that the current numerical values
of the vacuum and matter energy densities are so close to
each other. Attempts to resolve these issues on the basis of
the instability of de Sitter space [21–24] are not yet entirely
satisfactory. Finally, in [25], a possible discrepancy between
the �CDM model and the baryon acoustic oscillation data
for high redshift has been proposed. All these issues and also
the so far lack of any observational evidence of a dark matter
particle candidate, have triggered in recent times vigorous
research for alternatives of the �CDM model and/or Ein-
stein’s theory of gravitation [26–28] (see also the references
therein). As a result, a plethora of potential candidate theories
or models have been proposed and the need to invent effec-
tive observables to distinguish them has become apparent.
See also [29,30] for a recent proposal of quantum modifica-
tion of the general relativity, by treating the massive gravitons
as the primary dark matter.

Since its proposal, the maximum turn around radius as
a useful cosmological observable has received considerable
attention in the context of modified or alternative gravity/dark
energy models [31–37]. The goal is of course to constrain the
additional parameters of such theories. For example, for a
McVittie space-time [38–40] a derivation of the turn around
radius can be found in [31–33], by analyzing geodesics and
also using the quasilocal mass function of [41,42]. In [34]
a constraint on the matter-galileon coupling parameter was
obtained for a cubic galileon model [43]. Both an upper and
a lower bound were obtained for this coupling. The lower
bound is new, while the upper bound is improved by about
50% from what was known on the basis of the solar sys-
tem [44] data. The derivation of RTA,max in the Brans–Dicke
theory [45] in the presence of a positive cosmological con-
stant � was carried out in [35,36]. In this theory the RTA,max

is greater than that of �CDM. Qualitatively, this is due to
the fact that the extra scalar of the Brans–Dicke model con-
tributes to make the attractive force stronger, thus allow-
ing for larger structures. Consequently, no constraint on its
parameter ω was obtained. Two more models with the same
effective behavior will be presented in Sect. 3.2.

There are two ways to derive the maximum turn around
radius—one is to analyze geodesics in a static geometry and
the other is via the study of a test fluid moving in a back-
ground cosmological McVittie space-time [4,5]. It has been
explicitly demonstrated that these approaches yield the same
result for the �CDM model [5], as well as for the Brans–
Dicke theory with a positive � [36].
Let us now emphasize the new results we derive in the rest
of this paper. For w �= −1, the dark energy is taken to be
time dependent and, as we mentioned earlier, for a constant
such w, the expression for RTA,max was derived earlier in [5]
using cosmological scalar perturbation theory. Can we have a
derivation of the same result using a static geometry as well,
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just like w = −1? The answer turns out to be: yes. In Sect.
2, we consider in the context of general relativity a static
and spherically symmetric dark energy fluid with equation
of state P(r) = wρ(r) with constant w. We derive a first
order metric using this source and the maximum turn around
radius using this metric is found to match exactly with the
one derived in [5].

In many alternative dark energy models, the state param-
eter, w, could be time dependent. Therefore, it is important
to have a derivation of RTA,max in the context of such dark
energy models as well. In Sect 3.1 we shall present a deriva-
tion of the RTA,max in the cosmological scenario for a dark
energy with an arbitrary, time dependent state parameter
w(t) (PE (t) = w(t)ρE (t)) and by also taking into account
the effect of inhomogeneities upon the dark energy distribu-
tion. We shall further apply in Sect. 3.2 this generic result in
the context of the quintessence, as well as of the generalized
Chaplygin gas models, establishing their consistency with
the observational data. We conclude in Sect. 4 with a brief
discussion and outlook.

We shall use the mostly positive signature (−,+,+,+)

for the metric and will set c = 1 throughout.

2 RTA,max in the static geometry

It is well known that the positive � permits a static and spheri-
cally symmetric solution within the cosmological event hori-
zon, namely, the Schwarzschild–de Sitter space-time,

ds2 = −(1 − 2MG/r − H2
0 r

2)dt2

+ (1 − 2MG/r − H2
0 r

2)−1dr2 + r2d�2 (1)

where d�2 = dθ2 +sin2 θdφ2 is the unit sphere line element
and H0 = √

�/3. Let us consider a timelike geodesic ua

(uaua = −1) in this space-time. The above space-time is
endowed with one timelike and three spacelike Killing vector
fields, generating a 2-sphere,

ζ a0 = (∂t )
a ζ a1 = − sin φ(∂θ )

a − cot θ cos φ(∂φ)a

ζ a2 = cos φ(∂θ )
a − cot θ sin φ(∂φ)a ζ a3 = (∂φ)a . (2)

The conserved quantities along the geodesics corresponding
to each of these Killing vector fields are given by

E = −gabu
aζ b

0 = (1 − 2MG/r − H2
0 r

2)ṫ

L1 = gabu
aζ b

1 = −r2 (
θ̇ sin φ + φ̇ sin θ cos θ cos φ

)

L2 = gabu
aζ b

2 = r2 (
θ̇ cos φ − φ̇ sin θ cos θ sin φ

)

L3 = gabu
aζ b

3 = φ̇ r2 sin2 θ (3)

where the dot denotes differentiation with respect to the
proper time along the trajectory. The above conserved quan-
tities are, respectively, identified as the conserved energy and
the conserved components of the orbital angular momentum

of the geodesic. Expanding the on-shell condition uaua =
−1 in the background of Eq.(1) and using Eq. (3), we have

ṙ = ±
√
E2 − (

1 − 2MG/r − H2
0 r

2
) (

L2/r2 + 1
)

(4)

where L2 = L2
1 + L2

2 + L2
3 = r4(θ̇2 + φ̇2 sin2 θ) and the

± sign denotes outgoing and incoming trajectories, respec-
tively. The maximum turn around is determined by the con-
dition of vanishing acceleration r̈ = 0, or,

± L2

r3

(
1 − 2MG/r − H2

0 r
2
)

∓
(
L2/r2 + 1

)

×
(
MG/r2 − H2

0 r
)

= 0. (5)

It is straightforward to convince oneself that, as expected, the
consequence of angular momentum is to decrease the size of
a stable structure with a given mass, because the attraction
of the central mass has to counterbalance the additional cen-
trifugal force due to the rotation. Indeed, define

R3
0 = M

H2
0

, λ2 = L2

MR0
, m = 3M

R0
= 3(MH0)

2/3 and

x = r

R0

and write the condition (5) in the form

λ2
(

1 − m

x

)
= x(1 − x3) (6)

The cosmic structures of interest have sizes much larger than
their Schwarzschild radius and much smaller than the cosmo-
logical horizon, i.e. 2M � r � H−1

0 or equivalently m �
x � m−1/2, with m � 1 for consistency. For λ = 0, Eq. (7)
has the well known solution x = 1 (r = R0 = (M/H2

0 )1/3).
Introducing a small angular momentum λ2 = O(ε) the above
solution changes to x = 1 − 1

3 (1 − m)λ2 < 1, which con-
firms that the angular momentum diminishes the size of the
cosmic structures. The above argument can be generalized
numerically to all physical angular momenta.

Thus we conclude that the maximum possible size of a
structure with a given mass is the maximum turn around
radius for L = 0, that is,

RTA,max =
(

3MG

�

) 1
3

. (7)

In other words, this is precisely the point where the attraction
due to the central mass gets balanced with the repulsion due
to the dark energy, for radial timelike geodesics.

The above derivation could also be performed using the
orbits of the timelike Killing vector field of Eq. (1). Precisely,
the static observers along these timelike Killing vector field
would feel a spacelike acceleration ab = (∂t )

a∇a(∂t )
b =(

GM/r2 − H2
0 r

)∇br . Thus the acceleration vanishes at r =
RTA,max, corresponding to the maximum of the norm of the
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timelike Killing vector field, giving the maximum size of
the structure. We also note here that, for structures up to
as large as M ∼ 1016M� and taking � ∼ 10−52m−2, the
(2MG/r + H2

0 r
2) term appearing in the metric functions is

much less than unity at this length scale. In other words, the
maximum we are dealing with here is a very broad maximum
for practical astrophysical scenarios.

Even though the above computation might seem idealistic
as the framework used was static, it can be generalized, as
we shall see in the next section, to include the �CDM cos-
mological perturbation theory and leads to exactly the same
answer [5], as expected from the possible gauge or coordi-
nate invariance of the maximum turn around radius [46]. We
shall also further extend this result there with general dark
energy with equation of state PE (t) = w(t)ρE (t).

Staying at the constant w case, for w �= −1, the dark
energy is in general treated as time dependent and spatially
homogeneous. For a constant such w, the maximum turn
around radius was found to be (−3MG/(4π(1 + 3w)ρE ))1/3

[5]. For w = −1, we may identify � = 8πGρE to recover
the �CDM result. In the following, we wish to present a
novel alternative derivation of this result in the framework of
a static geometry, assuming accordingly that the dark energy
is static as well.

The concept of static dark energy was earlier introduced
in e.g. [47–51] to construct compact and static star-like solu-
tions, known as the “dark energy stars”, made up of a dark
energy fluid. This corresponds to the assumption that in
the vicinity of a structure or central mass, the dark energy
becomes inhomogeneous too. Quite surprisingly, as we shall
see, the answers obtained in these two ways match! However,
it is important to emphasize that we are not considering any
dark energy stars here, but only generic large scale structures
in the ambiance of a static dark energy fluid. Certainly, as
we move away from the object, the assumption of staticity
would break down.

Let us then begin with the ansatz for a static spherically
symmetric space-time,

ds2 = − f (r)dt2 + h(r)dr2 + r2d�2. (8)

We assume that the energy-momentum tensor for the dark
energy corresponds to that of an ideal fluid,

T E
ab = ρE uaub + PE (gab + uaub) , (9)

where ρE , PE and ua are, respectively, the energy density,
pressure and the velocity of the fluid’s world line. For a back-
reacting T E

ab in a static geometry, ua should be parallel to the
orbits of the timelike Killing vector field. If we normalize it
to unity, uaua = −1, we may take ua = f −1/2(∂t )

a . We
assume that the parameter w in the fluid equation of state
PE = wρE , is a constant. We shall take ρE > 0, so that
w < −1/3, necessary to violate the strong energy condition
and generate repulsive effects [52].

The three independent Einstein equations for this system
are

h′

h2r
+ 1

r2 − 1

hr2 = 8πGρE ,

f ′

h f r
− 1

r2 + 1

hr2 = 8πGwρE ,

f ′′

2 f h
− h′

2h2r
+ f ′

2 f hr
− f ′h′

4h2 f
− f ′2

4 f 2h
= 8πGwρE ,

(10)

where a prime denotes derivative with respect to the radial
coordinate once and where use was made of the equation of
state. Using the conservation equation ∇aT E

ab = 0, we obtain

ρE (r) = ρE,0

f
1+w
2w (r)

(11)

where ρE,0 is an integration constant. The above equation
can be thought of as an analog of the time dependence of the
energy density in a homogeneous cosmological space-time,
ρE (t) ∼ a(t)−3(1+w), where the scale factor a(t) is equiv-
alent to the redshift or the Tolman factor f (r) [52], for a
static space-time. We could not find an exact solution of Eq.
(10) corresponding to the above expression for ρE (r). How-
ever, since we are chiefly interested in the maximum turn
around region, we still could find an approximate and lin-
earized solution there as follows. Since we have seen earlier
that the maximum turn around radius in a static space-time
corresponds to the maximum of the norm of the timelike
Killing vector field ( f ′ = 0), we may ignore the variation of
ρE around this point and write ρE ≈ ρE (r ∼ RTA,max) ≈
ρE,0/ f (RTA,max) ≡ ρ0 = �/8πG (say). Then the solution
of Eq. (10) for the metric is

ds2 = −
(

1 − 2MG

r
− �r2

3

)− 1+3w
2

(
r

r0

)− 3(1+w)
2

×
∣∣
∣∣
r

rH
− 1

∣∣
∣∣

9(1+w)(1−�r2
H /3)

2�(rC−rH )(rH−rU )

×
∣∣
∣∣
r

rC
− 1

∣∣
∣∣

− 9(1+w)(1−�r2
C /3)

2�(rC−rH )(rC−rU )

×
∣∣∣
∣
r

rU
− 1

∣∣∣
∣

− 9(1+w)(1−�r2
U /3)

2�(rC−rU )(rH−rU )
dt2

+
(

1 − 2MG

r
− �r2

3

)−1

dr2 + r2d�2. (12)

The parameter M can be regarded as the mass of a central
compact object and r0 is an arbitrary length parameter. The
three other constants rH , rC and rU are the nonvanishing
roots of the equation 1 − 2MG/r − �r2/3 = 0. For the
physically interesting case 3MG

√
� ≤ 1, all of them are

real, namely
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rH = 2√
�

cos

[
1

3
cos−1

(
3MG

√
�

)
+ π

3

]
,

rC = 2√
�

cos

[
1

3
cos−1

(
3MG

√
�

)
− π

3

]
(13)

are precisely the horizon lengths of the Schwarzschild–de
Sitter space-time, while the third, rU = −(rH+rC ), is clearly
unphysical. However, for w �= −1 they are not known to have
any such physical meaning.

Note that, for w = −1 in Eq. (12), we recover, as expected,
the Schwarzschild–de Sitter space-time. Also, in the limit

M → 0, it is easy to see that rH → 0 and rC →
√

3
�

, in
which case Eq. (12) becomes

ds2 = −
(

1 − �r2

3

)− 1+3w
2

dt2

+
(

1 − �r2

3

)−1

dr2 + r2d�2. (14)

Finally, if we set � = 0 in Eq. (12), we recover the
Schwarzschild space-time.

However, since the metric of Eq. (12) or (14) was derived
using the a priori assumption that we are in the maximum turn
around region, to be consistent, we have to linearize it now as
follows. First we note that since the observed value of the dark
energy is tiny, it is reasonable to assume that MG

√
� � 1.

Then it turns out that rH ≈ 2MG and rC ≈
√

3
�

in Eq. (13).
Moreover, the maximum turn around length scale must be
much smaller than the Hubble horizon scale ∼O(�−1/2) and
also much larger than the Schwarzschild radius of the central
mass, i.e. both termsGM/r and �r2/3 must be much smaller
than unity at or around this length scale. Putting these all in
our calculation, we find, up to linear order, that the metric
in Eq. (12) can be written around the maximum turn around
region as

ds2 ≈ −
(

1 − 2MG

r
+ (1 + 3w)�r2

6

)( r0

2MG

) 3(1+w)
2

dt2

+
(

1 + 2MG

r
+ �r2

3

)
dr2 + r2d�2. (15)

Rescaling the time coordinate t ′ = (r0/2MG)3(1+w)/4t , and
dropping off the prime without any loss of generality, we
obtain finally

ds2 ≈ −
(

1 − 2MG

r
+ (1 + 3w)�r2

6

)
dt2

+
(

1 + 2MG

r
+ �r2

3

)
dr2 + r2d�2, (16)

which for w = −1 leads to the linearized Schwarzschild–
de Sitter space-time with � identified with the cosmological
constant.

As we discussed earlier, the maximum turn around radius
in a static space-time is equivalently given by the maximum
of the norm of the timelike Killing vector field (i.e., ∂r gtt =
0), giving

RTA,max =
(

− 6MG

(1 + 3w)�

) 1
3 =

(
− 3MG

4π(1 + 3w)ρ0

) 1
3

,

(17)

where in the last equality we have substituted back � =
8πGρE,0/ f (RTA,max) ≡ 8πGρ0. This exactly matches with
the result of [5], obtained by using the cosmological per-
turbation theory, and rules out all dark energy models with
w � −2.3. For the cosmological case, ρ0 was to be under-
stood as the dark energy density today for nearby structures.
Finally, as a consistency check of Eq. (15), it is easy to see
that in the maximum turn around region for structures as
large as up to M ∼ 1016M�, both MG/r and �r2 terms are
much smaller than unity, justifying further the simplification
ρE (r) ≈ ρ0 we used for the derivation.3

3 Time dependent cosmological scenario

3.1 RTA,max in models with generic state parameter w(t)

We start with the ansatz for the perturbative McVittie space-
time, describing the gravitational field of a point mass sitting
in the ambient spatially homogeneous and isotropic cosmo-
logical space-time with flat spatial sections,

ds2 = −(1 + 2
(R, t))dt2 + a2(t)(1 − 2�(R, t))

×
(

dx2 + dy2 + dz2
)

(18)

where 
 and � are the weak and linearized gravitational
potentials and R = √

x2 + y2 + z2 is the comoving radius.
The above ansatz holds only for length scales much greater
than the Schwarzschild radius of the central mass. In other
words, it is suitable for describing large scale non-black hole
structures such as the galaxies or clusters of galaxies, whose
Schwarzschild radii are located much inside them, implying
|
|, |�| � 1. A rather familiar example of such space-times

3 As an aside, we note here that Eqs. (9) and (11) give us the expression
for the trace of the static dark energy’s energy-momentum tensor,

T E = − (1 + 3w)ρE,0

f
1+w
2w (r)

.

Thus on the event horizon of a static black hole ( f (r) = 0), the trace
diverges for w < −1, which implies the divergence of the Ricci scalar
too, indicating a naked curvature singularity. Since the horizon of a
static black hole corresponds to the infinities of the timelike Killing
coordinate (e.g. [52]), perhaps the above divergence is an analog of the
so called phantom disaster (e.g., [1]) at cosmological late times for such
dark energy models.
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would be the Schwarzschild–de Sitter space-time written
much outside the Schwarzschild radius, with a(t) = e

√
�/3 t

and 
(R, t) = −2GM/Ra(t) = �(R, t).
The Christoffel symbols for the above metric are

�t
t t = 
̇, �t

i t = ∂i
,

�t
i j =

[
aȧ(1 − 2� − 2
) − a2�̇

]
δi j

�i
t t = ∂i


a2 , �i
j t = (H − �̇)δi j ,

�i
jk = ∂i�δ jk − ∂ j�δik − ∂k�δi j (19)

where a dot denotes differentiation once with respect to time,
H = ȧ/a is the Hubble rate, the indices (i, j) run between
the spatial coordinates x , y and z and we have retained terms
only linear in the potentials. The nonvanishing components
of the Ricci tensor are

Rtt = −3H2 − 3Ḣ + ∂2


a2 + 3�̈ + 3H(
̇ + 2�̇),

Rti = 2∂i
(

̇ + H�

)

Ri j =
[
(1 − 2� − 2
)(aä + 2ȧ2) + ∂2� − a2�̈

−aȧ(
̇ + 6�̇)
]
δi j + ∂i∂ j (� − 
) (20)

where ∂2 ≡ ∂2
x + ∂2

y + ∂2
z , whereas the components of the

Einstein tensor are

Gtt = 3H2 + 2

a2 ∂2� − 6H�̇,

Gti = Rti = 2∂i
(

̇ + H�

)

Gi j =
[
−

(
2ä

a
+ H2

)
+ 2(� + 
)

(
2ä

a
+ H2

)

+ ∂2(
 − �)

a2 + 2�̈ + 2H(
̇ + 3�̇)

]
a2δi j

+ ∂i∂ j (� − 
). (21)

We will use the above equations to do study cosmologi-
cal scalar perturbation theory at the linear order with the
dark energy and the cold dark matter as the sources. We
shall ignore the backreaction effects due to any other mat-
ter fields such as the electromagnetic radiation. The energy-
momentum tensor for the dark energy is given by

T E
ab = T E,0

ab (t) + δT E
ab(R, t) (22)

where the first term on the right hand side corresponds
to the homogeneous background Friedmann–Robertson–
Walker (FRW) space-time,

T E,0
ab (t) = ρE (t)(∇at)(∇bt) + PE (t)a2(t)δab (23)

where the indices of the Kronecker delta run over the spatial
coordinates only, while the energy density and the pressure
satisfy

w(t) = PE (t)/ρE (t).

The second term on the right hand side of Eq. (22) corre-
sponds to the inhomogeneous linear perturbation due to a
central and spherical massive object, like a galaxy. Up to
linear order the most general such perturbation should be
written as

δT E
ab(R, t) ≡

{
δρE (R, t), a2(t)δPE (R, t)δi j ,

× a2(t)δT E
i j (R, t), δT E

ti (R, t)
}

(24)

where we have ignored second order terms, e.g. of order
∼
δρE . δT E

i j is not proportional to δi j and, in particular,
it may contain off-diagonal terms. Likewise, we have the
energy-momentum tensor corresponding to the cold dark
matter

T M
ab =

[
ρ(t) + Mδ3(Ra(t))

]
(∇at)(∇bt) + δT M

ab (R, t)

(25)

where the first term on the right hand side corresponds to
the background FRW space-time and the second term repre-
sents the central mass M at rest with respect to the comoving
frame. Since we are interested in determining the maximum
size of a structure, the region of our interest is essentially
outside it. Then, just outside the structure by virtue of the
spherical symmetry of the problem, we may take all mass to
be localized at R = 0. Finally, the third term in Eq. (25) cor-
responds to a backreactionless or test spherical dark matter
fluid whose dynamics we wish to study,

δT M
ab (R, t) ≡

{
δρ(R, t), − ρ(t)a2(t)vi , O(vi v j )

}
(26)

where vi = dxi/dt is the peculiar velocity of the test fluid
element. Since the fluid under consideration is dark matter,
it must be nonrelativistic i.e., |vi | � 1 and hence we have
ignored O(v2) terms in the above ansatz. The negative sign
in front of the second term is a mere convention—after all
we may flip it to the positive sign by just changing the direc-
tion of motion of the fluid. We further assume that the weak
energy condition (Ttt > 0) is satisfied by all matter fields
and their perturbations. This completes the specification of
the sources and we shall now use them into the Einstein equa-
tions. We further refer the reader to [53,54] for some recent
developments of the cosmological perturbation theory with
a positive �, around a central point mass.

However, before proceeding, we may simplify the Ein-
stein tensors in Eq. (21) as follows. We note that, as we have
repeatedly emphasized, we are interested here in a length
scale much larger than the Schwarzschild radius and much
smaller than the Hubble radius. In such scales, we may make
a quasistatic approximation, in which the spatial derivatives
of the potentials 
 and � are much larger than their temporal
derivatives. Also, if ki is a component of the spatial momenta
associated with the Fourier transformed potentials, it is clear
from the length scale we are interested in that |ki | � H−1(t).
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Putting these all in our calculation and using Eqs. (23–25),
we obtain for the Einstein equations

3H2 = 8πG (ρ(t) + ρE (t)) and
ä

a

= −4πG

3
[ρ(t) + ρE (t)(1 + 3w(t))] (27)

for the FRW background and

1

a2(t)
∂2� = 4πG

(
Mδ3(Ra(t)) + δρE (R, t)

)

1

a2(t)

[
∂2(
 − �)δi j − ∂i∂ j (
 − �)

]

= 8πG
[
δPE (R, t)δi j + δTi j (R, t)

]

∂i
(

̇ + H�

) = 4πGδT E
ti (28)

for the perturbation. It is possible to solve, at least formally
if not analytically, the set of equations (27) and (28) as fol-
lows. First, for a given dark energy model, we can solve Eq.
(27) for the scale factor a(t). Coming next to the first of the
above equations, integrating both sides over a constant time
hypersurface, using the divergence theorem and the spherical
symmetry of the problem, it is easy to obtain

d�

dR
= G(M + δME (R, t))

R2a(t)
(29)

where δME (R, t) is the contribution to the proper mass func-
tion due to the dark energy perturbation,

δME (R, t) :=
∫

a3(t) R2 dR d�δρE (R, t). (30)

Since we have already assumed that all matter fields and
their perturbation satisfies the weak energy condition, we
have δME (R, t) > 0. Note that the mass function, M +
δME (R, t) could be thought of as an analog of the Tolman–
Oppenheimer–Volkoff mass function defined in a static sce-
nario for a fluid [52], where the self gravitating fluid may
now be imagined to have two components, both satisfying
positivity of the energy density.

Let us now come to the second of Eq. (28), in order to
find the relation between the two potentials. Clearly � �= 


only when T E
i j �= 0 for i �= j [55]. Also, by the spherical

symmetry of the problem, we have ∂θ (�−
) = 0 = ∂φ(�−

). Then, converting the indices (i, j) from Cartesian to
spherical polar, we have δT E

θθ = δT E
φφ = δT E

θφ = 0, and

d2(� − 
)

dR2 = 8π G a2(t) δT E
RR(R, t). (31)

For the explicit form of the above equation in the case of
Brans–Dicke cosmology we refer the reader to [36]. Using
Eq. (30), we now obtain

d


dR
= G(M + δME )

R2a(t)
− 8πGa2(t)

×
∫

dR δT E
RR(R, t) ≡ GMtot(R, t)

R2a(t)
(32)

where we have set the integration constant to zero, as in the
absence of any inhomogeneity, we must have 
 = 1. We
also have defined a total or effective mass function,

Mtot := M + δME − 8πa3(t)R2
∫

dR δT E
RR(R, t). (33)

Let us now come to the sector of the cold dark matter. The
homogeneous part, ρ(t), satisfies the conservation equation

ρ̇(t) + 3Hρ(t) = 0,

whereas the inhomogeneous backreactionless perturbation
specified in Eq. (26) satisfies (we have the conservation equa-
tion ∇aδT M

ab = 0, in the background of Eq. (18)

δρ̇ + ρ∂iv
i + 3Hδρ = 0

v̇i + 2Hvi + ∂i


a2 = 0. (34)

The maximum turn around radius is defined as the point
where the proper ‘peculiar acceleration’ (= d2(a(t)xi )/dt2)

of a fluid element vanishes which, after using the second of
Eq. (34) becomes

ä xi

a
− ∂i


a2 = 0. (35)

As discussed in the previous section, the largest of all the
maximum turn around radii is obtained for zero orbital angu-
lar momentum. Thus, setting i = R above and using Eqs. (27)
and (32), we obtain

− 4πGρE (t)

3
(1 + 3w(t))R− GMtot

R2a3(t)
−4πGρ(t)

3
R = 0.

(36)

Writing δM := 4
3πρ(t)R3a3(t) and �(t) := ρE (t)/8πG,

we find the proper maximum turn around radius

RTA,max = a(t)R
∣∣
max =

(
− 6GMeff(t)

�(t)(1 + 3w(t))

) 1
3

, (37)

where we have defined an effective mass function Meff =
Mtot+δM , taking into account the contribution of all sources.
The above expression for the maximum turn around radius
is formally similar to the result of [5] obtained for a constant
equation of state parameter and without considering any dark
energy perturbation, whose effects here have been dumped
into the mass function Meff . Setting w(t) = −1 in Eq. (37)
one recovers the �CDM result. Note also that, in deriving
the above expression, no assumption whatsoever was made
on the behavior of w(t). Thus, from the analysis of [5] it
follows that any dark energy model falling into the generic
class we are considering here with w (t = ttoday) � −2.3
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is consistent with the structure size vs. mass observational
data.

A few of the geometric aspects of the maximum turn
around radius could be noted here. Firstly and obviously, the
proper radial distance which is purely spatial, is an invari-
ant owing to the spatial isotropy of the systems like Eqs. (8),
(18), [1]. In other words, for all observers obeying the isome-
tries, RTA,max is an invariant quantity. Second, we may note
here the purely geometric origin of the definition of the turn
around radius in Sect. 2, from the vanishing of the acceler-
ation of the orbits of the timelike Killing vector field. For a
discussion of how such a consideration in a static space-time,
Eq. (8), could be linked to the general McVittie space-time,
Eq. (18), we refer the reader to [36].

Before ending this section, we wish to show that Eq. (35)
could in fact be related to the geodesic equation. Indeed, let
us first rewrite the metric Eq. (18) in terms of the proper
radial coordinate,

r := (1 − �(R, t))a(t)R. (38)

Since we are much outside the Schwarzschild radius of the
structure and much inside the Hubble radius (= H−1(t)), the
metric becomes to linear order in 
, � and H(t)r

ds2 = −
(

1 + 2
 − H2(t)r2
)

dt2 − 2H(t)rdrdt

+ (1 + 2r�′)dr2 + r2d�2 (39)

where the prime denotes differentiation with respect to the
proper radial coordinate. Let us consider a test particle mov-
ing along a timelike geodesic in the above geometry,

d2xμ

dλ2 + �μ
νρ

dxν

dλ

dxρ

dλ
= 0

where λ is an affine parameter, and we consider a radial,
nonrelativistic trajectory as earlier. In this limit, λ ≈ t and
hence dt/dλ ∼ 1. Thus the conservation of norm of the
geodesic implies dr/dλ � 1. Then we have

d2r

dt2 +
(
grr∂t gtr + 1

2
gtr∂t gtt − 1

2
grr∂r gtt

)
≈ 0. (40)

Using Eq. (39) and its inverse and keeping in mind that the
radial derivative of the potential dominates over the temporal
one at the length scales we are interested in, we obtain

d2r

dt2 − Ḣ(t)r − H2(t)r + 
 ′ = 0. (41)

Inserting into this the vanishing acceleration condition,
d2r/dt2 = 0, Eq. (35) is reproduced. Clearly, such equiv-
alence between the perfect fluid and geodesic is possible due
to the fact that, to derive Eq. (35), we had ignored all higher
order terms coming from the energy-momentum tensor of
the test fluid.

3.2 Applications of the above formalism

3.2.1 Quintessence models

As an application of the above general formalism, the first
example we take is the quintessence model, originally pro-
posed in [56] to address the coincidence problem of the dark
energy (see also [57] for a review). The role of the dark
energy is played here by a time dependent scalar field φ0(t).
The model is described by the action

S =
∫

d4x
√−g

[
R

16πG
− 1

2
(∇aφ)(∇aφ)−V (φ)+LM

]

(42)

where V (φ) is some positive potential, to be chosen appropri-
ately in order to generate the accelerated expansion and LM

is the Lagrangian density corresponding to any other matter
field, such as the cold dark matter. Assuming a homogeneous
FRW background solution with φ = φ0(t), its energy density
and pressure are given by

ρE (t) = φ̇0
2

2
+ V (φ0) and PE (t) = φ̇0

2

2
− V (φ0), (43)

respectively.
There could be various choices of the potential V (φ). For

example, the so called tracker model,

V (φ) = M4+pφ−p (44)

where the parameter M has dimensions of mass and p is
a positive real number. Or we have the so-called thawing
model:

V (φ) = M4 (1 + cos(φ/μ)) (45)

with the parameters M and μ having dimensions of mass.
For a review on different such choices for the potential and
their cosmological implications including the perspective of
particle physics, we refer our reader to [57] and references
therein.

For any potential V (φ) the homogeneous background is
a fluid of the type studied in the previous section, with state
‘parameter’ given by

w(t) = φ̇0
2 − 2V (φ0)

φ̇0
2 + 2V (φ0)

. (46)

Thus, it is clear that in order to have w(t) < 0, the potential
must dominate over the kinetic term. Furthermore, for posi-
tive potential the state parameter satisfies w(t) ≥ −1. Then,
according to the discussion of this section, one may imme-
diately conclude that the generic model of this class predicts
cosmic structure sizes greater than �CDM and, thus, is con-
sistent with the structure size vs. mass observations.
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3.2.2 The generalized Chaplygin gas model

The other theory we wish to address here is the generalized
Chaplygin gas model. The Chaplygin gas or its generalized
version attempts to give a unified picture of the dark energy
and the dark matter [58,59]. Let us consider the equation of
state

P = − A

ρβ
, (47)

where both β and A are positive constants. The conservation
equation, ρ̇ + 3H(ρ + P) = 0, gives

ρ =
[

A + ρ
β+1
m

a3(β+1)

] 1
β+1

(48)

where ρm is a positive integration constant. At sufficiently
late times, a(t) � 1 (the current scale factor is set to unity),

we have ρ ≈ A
1

β+1 and hence P ≈ −A
1

β+1 , giving the
equation of state of a cosmological constant. On the other
hand at sufficiently early times, a(t) � 1 and we have ρ ∼
a−3(t) and |P| � ρ, i.e. the matter dominated universe.

The original Chaplygin gas model was defined specifically
for β = 1. Then it turns out that the dust dominated universe
is smoothly interpolated with the dark energy dominated uni-
verse via an intermediate equation of state, P = ρ, known as
the stiff matter. Such an intermediate equation of state is nec-
essary in order to ensure that the normal matter has positive
pressure. The generalized Chaplygin gas model, on the other
hand, permits 0 < β ≤ 1, which we shall consider below.
In this case the matter and dark energy dominated universe
is interpolated via an equation of state P = βρ with β > 0
being a parameter of the theory and β = 0 corresponding to
the �CDM.

We are interested in the current universe dominated by the
dark energy. So, we may expand Eqs. (47) and (48) to obtain
at leading order

ρ ≈ A
1

1+β + ρ
1+β
0

(1 + β)A
β

1+β a3(1+β)

,

P ≈ −A
1

1+β + βρ
1+β
0

(1 + β)A
β

1+β a3(1+β)

. (49)

Thus, the above two equations represent the dynamics of our
universe with an effective homogeneous fluid with equation

of state P(t) = −A
1

1+β +β(ρ(t)− A
1

1+β ). Solving Eqs. (27)
for the scale factor we obtain

a(t) ∼
(

sinh
3H0(1 + β)t

2

) 2
3(1+β)

, (50)

with H0 = √
8πGA1/(1+β)/3. For t → ∞, we recover the

de Sitter space, while for β = 0 we recover the �CDM. In

order for this model to be consistent with modern cosmology,
the value of the parameter β needs to be rather small, β �
0.05 [60].

Equation (49) show that we do not need to consider the
inhomogeneous dark energy perturbation in this case, and
hence we have 
 = � in Eq. (18). With this, we study the
dynamics of a test generalized Chaplygin gas fluid, follow-
ing the method described in the preceding section. Since the
parameter β is small, we take terms like βδρ or βvi to be
second order only, giving the maximum turn around condi-
tion,

ä

a
R − 1 + β

a2 ∂R
 = 0. (51)

The Chaplygin gas equation of motion gives

ä

a
= 8πGA1/(1+β)

3
− 4πG(1 + 3β)ρ(t)

3
.

Writing 8πGA1/(1+β) = � and following the procedure
described in the previous section, it is straightforward to
obtain, to first order in the parameter β,

RTA,max =
(

3GMeff

�

) 1
3
(

1 + β

3
+ 2βδM

Meff

)
(52)

where δM := 4
3πR3a3(t)ρ(t) as earlier. Setting β = 0 one

recovers the �CDM result. Thus, since β > 0 the prediction
of the generalized Chaplygin gas model for the maximum
turnaround radius is larger than in �CDM. This fact can
be understood as the effect of the positive pressure fluid,
which opposes the accelerated expansion and implies that
the generalized Chaplygin gas too is consistent with the data
on the sizes and the masses of the cosmic structures.

4 Conclusions

In this work we have discussed various aspects of the maxi-
mum possible structure size, in the context of the mass versus
observed sizes of some nearby large scale cosmic structures.
In Sect. 2, we have given a derivation of the maximum turn
around radius for a dark energy with constant equation of
state parameter (P = wρ with w const.) in a purely static
geometry derived at the maximum turn around length scale
(Eq. (16)). This result was found earlier in [5] using cosmo-
logical perturbation theory. Even though for w �= −1, the
dark energy is usually taken to be time dependent and spa-
tially homogeneous and isotropic, we have shown here that
the same expression for the RTA,max holds when we consider
the dark energy to be inhomogeneous and time independent.

In Sect. 3 we have derived the expression for the RTA,max

in a cosmological scenario, using the McVittie geometry
in the weak field limit. The dark energy we have taken
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here is generic and has completely arbitrary, time depen-
dent state ‘parameter’ (P(t) = w(t)ρ(t) with w(t) arbi-
trary). We also have taken the first order backreaction effect
on the dark energy due to the central inhomogeneity. The
final result obtained in Eq. (37) is formally exactly simi-
lar to that of the case of w(t) = const. and hence giving
the same bound on the numerical value of the state param-
eter, w (t = ttoday) > −2.3. We have applied this general
formalism in Sect. 3.2 to two quite popular alternative dark
energy/gravity models viz. the quintessence and the general-
ized Chaplygin gas and have shown that both these models
pass the size versus mass test with flying colors.

The framework we have considered, even though it goes
beyond the �CDM model, essentially is described by the
Einstein equations. It should thus be highly interesting to
extend such a general framework to go beyond the usual
4-dimensional Einstein equations and to address more com-
plicated scenarios such as the brane-world [61]. We hope to
return to this issue in the near future.
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