40 research outputs found

    Gene Expression Changes in the Prefrontal Cortex, Anterior Cingulate Cortex and Nucleus Accumbens of Mood Disorders Subjects That Committed Suicide

    Get PDF
    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain

    Bright light in elderly subjects with nonseasonal major depressive disorder: a double blind randomised clinical trial using early morning bright blue light comparing dim red light treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression frequently occurs in the elderly. Its cause is largely unknown, but several studies point to disturbances of biological rhythmicity. In both normal aging, and depression, the functioning of the suprachiasmatic nucleus (SCN) is impaired, as evidenced by an increased prevalence of day-night rhythm perturbations, such as sleeping disorders. Moreover, the inhibitory SCN neurons on the hypothalamus-pituitary adrenocortical axis (HPA-axis) have decreased activity and HPA-activity is enhanced, when compared to non-depressed elderly. Using bright light therapy (BLT) the SCN can be stimulated. In addition, the beneficial effects of BLT on seasonal depression are well accepted. BLT is a potentially safe, nonexpensive and well accepted treatment option. But the current literature on BLT for depression is inconclusive.</p> <p>Methods/Design</p> <p>This study aims to show whether BLT can reduce non-seasonal major depression in elderly patients. Randomized double blind placebo controlled trial in 126 subjects of 60 years and older with a diagnosis of major depressive disorder (MDD, DSM-IV/SCID-I). Subjects are recruited through referrals of psychiatric outpatient clinics and from case finding from databases of general practitioners and old-people homes in the Amsterdam region. After inclusion subjects are randomly allocated to the active (bright blue light) vs. placebo (dim red light) condition using two Philips Bright Light Energy boxes type HF 3304 per subject, from which the light bulbs have been covered with bright blue- or dim red light- permitting filters. Patients will be stratified by use of antidepressants. Prior to treatment a one-week period without light treatment will be used. At three time points several endocrinological, psychophysiological, psychometrically, neuropsychological measures are performed: just before the start of light therapy, after completion of three weeks therapy period, and three weeks thereafter.</p> <p>Discussion</p> <p>If BLT reduces nonseasonal depression in elderly patients, then additional lightning may easily be implemented in the homes of patients to serve as add-on treatment to antidepressants or as a stand-alone treatment in elderly depressed patients. In addition, if our data support the role of a dysfunctional biological clock in depressed elderly subjects, such a finding may guide further development of novel chronobiological oriented treatment strategies.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: NCT00332670</p

    Correlations between Diffusion Tensor Imaging (DTI) and Magnetic Resonance Spectroscopy (1H MRS) in schizophrenic patients and normal controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence suggests that white matter integrity may play an underlying pathophysiological role in schizophrenia. N-acetylaspartate (NAA), as measured by Magnetic Resonance Spectroscopy (MRS), is a neuronal marker and is decreased in white matter lesions and regions of axonal loss. It has also been found to be reduced in the prefrontal and temporal regions in patients with schizophrenia. Diffusion Tensor Imaging (DTI) allows one to measure the orientations of axonal tracts as well as the coherence of axonal bundles. DTI is thus sensitive to demyelination and other structural abnormalities. DTI has also shown abnormalities in these regions.</p> <p>Methods</p> <p>MRS and DTI were obtained on 42 healthy subjects and 40 subjects with schizophrenia. The data was analyzed using regions of interests in the Dorso-Lateral Prefrontal white matter, Medial Temporal white matter and Occipital white matter using both imaging modalities.</p> <p>Results</p> <p>NAA was significantly reduced in the patient population in the Medial Temporal regions. DTI anisotropy indices were also reduced in the same Medial Temporal regions. NAA and DTI-anisotropy indices were also correlated in the left medial temporal region.</p> <p>Conclusion</p> <p>Our results implicate defects in the medial temporal white matter in patients with schizophrenia. Moreover, MRS and DTI are complementary modalities for the study of white matter disruptions in patients with schizophrenia.</p

    DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling

    Get PDF

    Excitatory amino acidergic pathways and receptors in the basal ganglia

    Full text link
    The striatum receives the majority of excitatory amino acidergic input to the basal ganglia from neocortical and allocortical sources. The subthalamic nucleus and the substantia nigra also receive excitatory amino acidergic inputs from neocortex. The subthalamic nucleus, which has prominent projections to the pallidum and nigra, is the only known intrinsic excitatory amino acidergic component of the basal ganglia. Possible excitatory amino acidergic inputs reach the basal ganglia from the intralaminar thalamic nuclei and the pedunculo-pontine nucleus. The striatum is richly endowed with all subtypes of excitatory amino acid receptors and these appear to be inhomogeneously distributed within the striatal complex. The non-striatal nuclei contain lesser levels of excitatory amino acid receptors and the relative proportion of these receptors varies between nuclei. The presence of high densities of excitatory amino acid receptors is a phylogenetically conserved feature of the striatum and its non-mammalian homologues. In Huntington's disease, there is substantial depletion of α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid, N-methyl-D-aspartate, and kainate receptors within the striatum. In Parkinson's disease substantia nigra, there is significant loss of N-methyl-D-aspartate and α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41734/1/726_2004_Article_BF00814003.pd

    Flavianate, an amino acid precipitant, is a competitive inhibitor of trypsin at pH 3.0

    No full text
    Textile dyes bind to proteins leading to selective co-precipitation of a complex involving one protein molecule and more than one dye molecule of opposite charge in acid solutions, in a process of reversible denaturation that can be utilized for protein fractionation. In order to understand what occurs before the co-precipitation, a kinetic study using bovine ß-trypsin and sodium flavianate was carried out based on reaction progress curve techniques. The experiments were carried out using <FONT FACE="Symbol">a</font>-CBZ-L-Lys-p-nitrophenyl ester as substrate which was added to 50 mM sodium citrate buffer, pH 3.0, containing varying concentrations of ß-trypsin and dye. The reaction was recorded spectrophotometrically at 340 nm for 30 min, and the families of curves obtained were analyzed simultaneously by fitting integrated Michaelis-Menten equations. The dye used behaved as a competitive inhibitor of trypsin at pH 3.0, with Ki = 99 µM; kinetic parameters for the substrate hydrolysis were: Km = 32 µM, and kcat = 0.38/min. The competitive character of the inhibition suggests a specific binding of the first dye molecule to His-57, the only positively charged residue at the active site of the enzyme

    Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties

    Get PDF
    Major depressive disorder is an extremely debilitating condition affecting millions of people worldwide. Nevertheless, currently available antidepressant medications still have important limitations, such as a low response rate and a time lag for treatment response that represent a significant problem when dealing with individuals who are vulnerable and prone to self-harm. Recent clinical trials have shown that the N-methyl-D-aspartate receptor antagonist, ketamine, can induce an antidepressant response within hours, which lasts up to 2 weeks, and is effective even in treatment-resistant patients. Nonetheless, its use is limited due to its psychotomimetic and addictive properties. Understanding the molecular pathways through which ketamine exerts its antidepressant effects would help in the developing of novel antidepressant agents that do not evoke the same negative side effects of this drug. This review focuses specifically on the effects of ketamine on three molecular mechanisms that are relevant to depression: synaptogenesis, immunomodulation and regulation of glycogen synthase kinase-3 activity
    corecore