1,261 research outputs found

    Speciation changes of cadmium in mangrove (Kandelia candel (L.)) rhizosphere sediments

    Get PDF
    The speciation distribution of cadmium (Cd) in mangrove (Kandelia candel (L.) Druce) rhizosphere sediment was investigated after different contents of Cd being loaded. The study results indicated that root induced changes of Cd bioavailability in the rhizosphere. Exchangeable and carbonate bound Cd in the rhizosphere sediments were lower than these in the bulk sediments, whilst an increase in Fe-Mn oxides bound and O.M/sulfide bound fractions occurred in the rhizosphere sediment. Increased levels of Cd in sediments resulted in higher Cd concentrations in mangrove plants, and the order of accumulation was: roots > hypocotyls > stems and leaves

    Room temperature texturing of austenite/ferrite steel by electropulsing

    Get PDF
    The work reports an experimental observation on crystal rotation in a duplex (austenite + ferrite) steel induced by the electropulsing treatment at ambient temperature, while the temperature rising due to ohmic heating in the treatment was negligible. The results demonstrate that electric current pulses are able to dissolve the initial material’s texture that has been formed in prior thermomechanical processing and to produce an alternative texture. The results were explained in terms of the instability of an interface under perturbation during pulsed electromigation

    P-rex1 cooperates with PDGFRβ to drive cellular migration in 3D microenvironments

    Get PDF
    Expression of the Rac-guanine nucleotide exchange factor (RacGEF), P-Rex1 is a key determinant of progression to metastasis in a number of human cancers. In accordance with this proposed role in cancer cell invasion and metastasis, we find that ectopic expression of P-Rex1 in an immortalised human fibroblast cell line is sufficient to drive multiple migratory and invasive phenotypes. The invasive phenotype is greatly enhanced by the presence of a gradient of serum or platelet-derived growth factor, and is dependent upon the expression of functional PDGF receptor β. Consistently, the invasiveness of WM852 melanoma cells, which endogenously express P-Rex1 and PDGFRβ, is opposed by siRNA of either of these proteins. Furthermore, the current model of P-Rex1 activation is advanced through demonstration of P-Rex1 and PDGFRβ as components of the same macromolecular complex. These data suggest that P-Rex1 has an influence on physiological migratory processes, such as invasion of cancer cells, both through effects upon classical Rac1-driven motility and a novel association with RTK signalling complexes

    Risk Factors For Recurrent Stroke After Coronary Artery Bypass Grafting

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Preventing stroke after coronary artery bypass grafting (CABG) remains a therapeutic goal, due in part to the lack of identifiable risk factors. The aim of this study, accordingly, was to identify risk factors in CABG patients with a previous history of stroke.</p> <p>Methods</p> <p>Patients with a history of stroke who underwent CABG at Beijing An Zhen hospital from January 2007 to July 2010 were selected (n = 430), and divided into two groups according to the occurrence of postoperative stroke. Pre-operative and post-operative data were retrospectively collected and analyzed by univariate and multivariate logistic regression analyses.</p> <p>Results</p> <p>Thirty-two patients (7.4%) suffered post-operative stroke. Univariate analysis identified several statistically significant risk factors in the post-operative stroke group, including pre-surgical left ventricular ejection fractions (LVEF) ≤50%, on-pump surgery, post-operative atrial fibrillation (AF), and hypotension. Multivariable analysis identified 4 independent risk factors for recurrent stroke: unstable angina (odds ratio (OR) = 2.95, 95% CI: 1.05-8.28), LVEF ≤50% (OR = 2.77, 95% CI: 1.23-6.27), AF (OR = 4.69, 95% CI: 1.89-11.63), and hypotension (OR = 2.55, 95% CI: 1.07-6.04).</p> <p>Conclusion</p> <p>Unstable angina, LVEF ≤50%, post-operative AF, and post-operative hypotension are independent risk factors of recurrent stroke in CABG patients with a previous history of stroke.</p

    Development of Shuttle Vectors for Transformation of Diverse Rickettsia Species

    Get PDF
    Plasmids have been identified in most species of Rickettsia examined, with some species maintaining multiple different plasmids. Three distinct plasmids were demonstrated in Rickettsia amblyommii AaR/SC by Southern analysis using plasmid specific probes. Copy numbers of pRAM18, pRAM23 and pRAM32 per chromosome in AaR/SC were estimated by real-time PCR to be 2.0, 1.9 and 1.3 respectively. Cloning and sequencing of R. amblyommii AaR/SC plasmids provided an opportunity to develop shuttle vectors for transformation of rickettsiae. A selection cassette encoding rifampin resistance and a fluorescent marker was inserted into pRAM18 yielding a 27.6 kbp recombinant plasmid, pRAM18/Rif/GFPuv. Electroporation of Rickettsia parkeri and Rickettsia bellii with pRAM18/Rif/GFPuv yielded GFPuv-expressing rickettsiae within 2 weeks. Smaller vectors, pRAM18dRG, pRAM18dRGA and pRAM32dRGA each bearing the same selection cassette, were made by moving the parA and dnaA-like genes from pRAM18 or pRAM32 into a vector backbone. R. bellii maintained the highest numbers of pRAM18dRGA (13.3 – 28.1 copies), and R. parkeri, Rickettsia monacensis and Rickettsia montanensis contained 9.9, 5.5 and 7.5 copies respectively. The same species transformed with pRAM32dRGA maintained 2.6, 2.5, 3.2 and 3.6 copies. pRM, the plasmid native to R. monacensis, was still present in shuttle vector transformed R. monacensis at a level similar to that found in wild type R. monacensis after 15 subcultures. Stable transformation of diverse rickettsiae was achieved with a shuttle vector system based on R. amblyommii plasmids pRAM18 and pRAM32, providing a new research tool that will greatly facilitate genetic and biological studies of rickettsiae

    Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Get PDF
    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies

    Perturbation of adhesion molecule-mediated chondrocyte-matrix interactions by 4-hydroxynonenal binding: implication in osteoarthritis pathogenesis

    Get PDF
    ABSTRACT: INTRODUCTION: Objectives were to investigate whether interactions between human osteoarthritic chondrocytes and 4-hydroxynonenal (HNE)-modified type II collagen (Col II) affect cell phenotype and functions and to determine the protective role of carnosine (CAR) treatment in preventing these effects. METHODS: Human Col II was treated with HNE at different molar ratios (MR) (1:20 to 1:200; Col II:HNE). Articular chondrocytes were seeded in HNE/Col II adduct-coated plates and incubated for 48 hours. Cell morphology was studied by phase-contrast and confocal microscopy. Adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and alpha1beta1 integrin at protein and mRNA levels were quantified by Western blotting, flow cytometry and real-time reverse transcription-polymerase chain reaction. Cell death, caspases activity, prostaglandin E2 (PGE2), metalloproteinase-13 (MMP-13), mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-kappaB) were assessed by commercial kits. Col II, cyclooxygenase-2 (COX-2), MAPK, NF-kappaB-p65 levels were analyzed by Western blotting. The formation of alpha1beta1 integrin-focal adhesion kinase (FAK) complex was revealed by immunoprecipitation. RESULTS: Col II modification by HNE at MR approximately 1:20, strongly induced ICAM-1, alpha1beta1 integrin and MMP-13 expression as well as extracellular signal-regulated kinases 1 and 2 (ERK1/2) and NF-kappaB-p65 phosphorylation without impacting cell adhesion and viability or Col II expression. However, Col II modification with HNE at MR approximately 1:200, altered chondrocyte adhesion by evoking cell death and caspase-3 activity. It inhibited alpha1beta1 integrin and Col II expression as well as ERK1/2 and NF-kappaB-p65 phosphorylation, but, in contrast, markedly elicited PGE2 release, COX-2 expression and p38 MAPK phosphorylation. Immunoprecipitation assay revealed the involvement of FAK in cell-matrix interactions through the formation of alpha1beta1 integrin-FAK complex. Moreover, the modification of Col II by HNE at a 1:20 or approximately 1:200 MR affects parameters of the cell shape. All these effects were prevented by CAR, an HNE-trapping drug. CONCLUSIONS: Our novel findings indicate that HNE-binding to Col II results in multiple abnormalities of chondrocyte phenotype and function, suggesting its contribution in osteoarthritis development. CAR was shown to be an efficient HNE-snaring agent capable of counteracting these outcomes

    Microneedles: A New Frontier in Nanomedicine Delivery

    Get PDF
    This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN

    Gene expression profiling reveals differential effects of sodium selenite, selenomethionine, and yeast-derived selenium in the mouse

    Get PDF
    The essential trace mineral selenium is an important determinant of oxidative stress susceptibility, with several studies showing an inverse relationship between selenium intake and cancer. Because different chemical forms of selenium have been reported to have varying bioactivity, there is a need for nutrigenomic studies that can comprehensively assess whether there are divergent effects at the molecular level. We examined the gene expression profiles associated with selenomethionine (SM), sodium selenite (SS), and yeast-derived selenium (YS) in the intestine, gastrocnemius, cerebral cortex, and liver of mice. Weanling mice were fed either a selenium-deficient (SD) diet (<0.01 mg/kg diet) or a diet supplemented with one of three selenium sources (1 mg/kg diet, as either SM, SS or YS) for 100 days. All forms of selenium were equally effective in activating standard measures of selenium status, including tissue selenium levels, expression of genes encoding selenoproteins (Gpx1 and Txnrd2), and increasing GPX1 enzyme activity. However, gene expression profiling revealed that SS and YS were similar (and distinct from SM) in both the expression pattern of individual genes and gene functional categories. Furthermore, only YS significantly reduced the expression of Gadd45b in all four tissues and also reduced GADD45B protein levels in liver. Taken together, these results show that gene expression profiling is a powerful technique capable of elucidating differences in the bioactivity of different forms of selenium
    corecore