344 research outputs found

    Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube

    Get PDF
    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared

    Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO

    Get PDF
    Background: Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. Methodology: This study presents a simple and reproducible method to fabricate a superhydrophobic surface with microscale roughness based on zinc oxide (ZnO) hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0u), while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168u). The procedure reported here can be applied to substrates consisting of other materials and having various shapes. Results: The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essentia

    Proline-Rich Tyrosine Kinase 2 (Pyk2) Promotes Cell Motility of Hepatocellular Carcinoma through Induction of Epithelial to Mesenchymal Transition

    Get PDF
    Aims: Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase of the focal adhesion kinase (FAK) family, is up-regulated in more than 60% of the tumors of hepatocellular carcinoma (HCC) patients. Forced overexpression of Pyk2 can promote the proliferation and invasion of HCC cells. In this study, we aimed to explore the underlying molecular mechanism of Pyk2-mediated cell migration of HCC cells. Methodology/Principal Findings: We demonstrated that Pyk2 transformed the epithelial HCC cell line Hep3B into a mesenchymal phenotype via the induction of epithelial to mesenchymal transition (EMT), signified by the up-regulation of membrane ruffle formation, activation of Rac/Rho GTPases, down-regulation of epithelial genes E-cadherin and cytokeratin as well as promotion of cell motility in presence of lysophosphatidic acid (LPA). Suppression of Pyk2 by overexpression of dominant negative PRNK domain in the metastatic HCC cell line MHCC97L transformed its fibroblastoid phenotype to an epithelial phenotype with up-regulation of epithelial genes, down-regulation of mesenchymal genes N-cadherin and STAT5b, and reduction of LPA-induced membrane ruffle formation and cell motility. Moreover, overexpression of Pyk2 in Hep3B cells promoted the phosphorylation and localization of mesenchymal gene Hic-5 onto cell membrane while suppression of Pyk2 in MHCC97L cells attenuated its phosphorylation and localization. Conclusion: These data provided new evidence of the underlying mechanism of Pyk2 in controlling cell motility of HCC cells through regulation of genes associated with EMT. © 2011 Sun et al.published_or_final_versio

    Reelin Secreted by GABAergic Neurons Regulates Glutamate Receptor Homeostasis

    Get PDF
    BACKGROUND: Reelin is a large secreted protein of the extracellular matrix that has been proposed to participate to the etiology of schizophrenia. During development, reelin is crucial for the correct cytoarchitecture of laminated brain structures and is produced by a subset of neurons named Cajal-Retzius. After birth, most of these cells degenerate and reelin expression persists in postnatal and adult brain. The phenotype of neurons that bind secreted reelin and whether the continuous secretion of reelin is required for physiological functions at postnatal stages remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Combining immunocytochemical and pharmacological approaches, we first report that two distinct patterns of reelin expression are present in cultured hippocampal neurons. We show that in hippocampal cultures, reelin is secreted by GABAergic neurons displaying an intense reelin immunoreactivity (IR). We demonstrate that secreted reelin binds to receptors of the lipoprotein family on neurons with a punctate reelin IR. Secondly, using calcium imaging techniques, we examined the physiological consequences of reelin secretion blockade. Blocking protein secretion rapidly and reversibly changes the subunit composition of N-methyl-D-aspartate glutamate receptors (NMDARs) to a predominance of NR2B-containing NMDARs. Addition of recombinant or endogenously secreted reelin rescues the effects of protein secretion blockade and reverts the fraction of NR2B-containing NMDARs to control levels. Therefore, the continuous secretion of reelin is necessary to control the subunit composition of NMDARs in hippocampal neurons. CONCLUSIONS/SIGNIFICANCE: Our data show that the heterogeneity of reelin immunoreactivity correlates with distinct functional populations: neurons synthesizing and secreting reelin and/or neurons binding reelin. Furthermore, we show that continuous reelin secretion is a strict requirement to maintain the composition of NMDARs. We propose that reelin is a trans-neuronal messenger secreted by GABAergic neurons that regulates NMDARs homeostasis in postnatal hippocampus. Defects in reelin secretion could play a major role in the development of neuropsychiatric disorders, particularly those associated with deregulation of NMDARs such as schizophrenia

    Temporal and Spatial Profiling of Root Growth Revealed Novel Response of Maize Roots under Various Nitrogen Supplies in the Field

    Get PDF
    A challenge for Chinese agriculture is to limit the overapplication of nitrogen (N) without reducing grain yield. Roots take up N and participate in N assimilation, facilitating dry matter accumulation in grains. However, little is known about how the root system in soil profile responds to various N supplies. In the present study, N uptake, temporal and spatial distributions of maize roots, and soil mineral N (Nmin) were thoroughly studied under field conditions in three consecutive years. The results showed that in spite of transient stimulation of growth of early initiated nodal roots, N deficiency completely suppressed growth of the later-initiated nodal roots and accelerated root death, causing an early decrease in the total root length at the rapid vegetative growth stage of maize plants. Early N excess, deficiency, or delayed N topdressing reduced plant N content, resulting in a significant decrease in dry matter accumulation and grain yield. Notably, N overapplication led to N leaching that stimulated root growth in the 40–50 cm soil layer. It was concluded that the temporal and spatial growth patterns of maize roots were controlled by shoot growth and local soil Nmin, respectively. Improving N management involves not only controlling the total amount of chemical N fertilizer applied, but also synchronizing crop N demand and soil N supply by split N applications

    Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.</p> <p>Results</p> <p>Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.</p> <p>Conclusions</p> <p>This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.</p

    Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Renari) introgressed from Gossypium aridum into upland cotton (G. hirsutum)

    Get PDF
    In this association mapping study, a tri-species hybrid, [Gossypium arboreum × (G. hirsutum × G. aridum)2], was crossed with MD51ne (G. hirsutum) and progeny from the cross were used to identify and map SSR markers associated with reniform nematode (Rotylenchulus reniformis) resistance. Seventy-six progeny (the 50 most resistant and 26 most susceptible) plants were genotyped with 104 markers. Twenty-five markers were associated with a resistance locus that we designated Renari and two markers, BNL3279_132 and BNL2662_090, mapped within 1 cM of Renari. Because the SSR fragments associated with resistance were found in G. aridum and the bridging line G 371, G. aridum is the likely source of this resistance. The resistance is simply inherited, possibly controlled by a single dominant gene. The markers identified in this project are a valuable resource to breeders and geneticists in the quest to produce cotton cultivars with a high level of resistance to reniform nematode

    Enhancement strategies for transdermal drug delivery systems: current trends and applications

    Get PDF
    corecore