53 research outputs found
Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia
Barrett’s oesophagus is a premalignant metaplastic condition that predisposes patients to the development of oesophageal adenocarcinoma. However, only a minor fraction of Barrett’s oesophagus patients progress to adenocarcinoma and it is thus essential to determine bio-molecular markers that can predict the progression of this condition. Telomere dysfunction is considered to drive clonal evolution in several tumour types and telomere length analysis provides clinically relevant prognostic and predictive information. The aim of this work was to use high-resolution telomere analysis to examine telomere dynamics in Barrett’s oesophagus. Telomere length analysis of XpYp, 17p, 11q and 9p, chromosome arms that contain key cancer related genes that are known to be subjected to copy number changes in Barrett’s metaplasia, revealed similar profiles at each chromosome end, indicating that no one specific telomere is likely to suffer preferential telomere erosion. Analysis of patient matched tissues (233 samples from 32 patients) sampled from normal squamous oesophagus, Z-line, and 2 cm intervals within Barrett’s metaplasia, plus oesophago-gastric junction, gastric body and antrum, revealed extensive telomere erosion in Barrett’s metaplasia to within the length ranges at which telomere fusion is detected in other tumour types. Telomere erosion was not uniform, with distinct zones displaying more extensive erosion and more homogenous telomere length profiles. These data are consistent with an extensive proliferative history of cells within Barrett’s metaplasia and are indicative of localised clonal growth. The extent of telomere erosion highlights the potential of telomere dysfunction to drive genome instability and clonal evolution in Barrett’s metaplasia
Temporal variability of urinary levels of nonpersistent insecticides in adult men
Widespread application of contemporary-use insecticides results in low-level exposure for a majority of the population through a variety of pathways. Urinary insecticide biomarkers account for all exposure pathways, but failure to account for temporal within-subject variability of urinary levels can lead to exposure misclassification. To examine temporal variability in urinary markers of contemporary-use insecticides, nine repeated urine samples were collected over 3 months from 10 men participating in an ongoing study of male reproductive health. These 90 samples were analyzed for urinary metabolites of chlorpyrifos (3,5,6-trichloro-2-pyridinol (TCPY)) and carbaryl (1-naphthol (1N)). Volume- based (unadjusted), as well as creatinine (CRE)- and specific gravity (SG)-adjusted concentrations were measured. TCPY had low reliability with an intraclass correlation coefficient between 0.15 and 0.21, while IN was moderately reliable with an intraclass correlation coefficient between 0.55 and 0.61. When the 10 men were divided into tertiles based on 3-month geometric mean TCPY and 1N levels, a single urine sample performed adequately in classifying a subject into the highest or lowest exposure tertiles. Sensitivity and specificity ranged from 0.44 to 0.84 for TCPY and from 0.56 to 0.89 for IN. Some differences in the results between unadjusted metabolite concentrations and concentrations adjusted for CRE and SG were observed. Questionnaires were used to assess diet in the 24 h preceding the collection of each urine sample. In mixed-effects models, TCPY was significantly associated with season as well as with consuming grapes and cheese, while IN levels were associated with consuming strawberries. In conclusion, although a single sample adequately predicted longer-term average exposure, a second sample collected at least 1 month following the first sample would reduce exposure measurement error. © 2005 Nature Publishing Group All rights reserved
Urinary levels of insecticide metabolites and DNA damage in human sperm
Background: Members of the general population are exposed to non-persistent insecticides at low levels. The present study explored whether environmental exposures to carbaryl and chlorpyrifos are associated with DNA damage in human sperm. Methods: Subjects (n = 260) were recruited through a Massachusetts infertility clinic. Individual exposures were measured as spot urinary metabolite concentrations of chlorpyrifos [3,5,6-trichloro-2-pyridinol (TCPY)] and carbaryl [1-naphthol (1N)], adjusted using specific gravity. Sperm DNA integrity was assessed by neutral comet assay and reported as comet extent, percentage DNA in comet tail (Tail%) and tail distributed moment (TDM). Results: A statistically significant increase in Tail% was found for an interquartile range (IQR) increase in both 1N [coefficient = 4.1; 95% confidence interval (CI) 1.9-6.3] and TCPY (2.8; 0.9-4.6), while a decrease in TDM was associated with IQR changes in 1N (-2.2; -4.9 to 0.5) and TCPY (-2.5; -4.7 to -0.2). A negative correlation between Tail% and TDM was present only when stratified by comet extent, suggesting that Tail% and TDM may measure different types of DNA damage within comet extent strata. Conclusions: Environmental exposure to carbaryl and chlorpyrifos may be associated with increased DNA damage in human sperm, as indicated by a change in comet assay parameters. © European Society of Human Reproduction and Embryology 2004; all rights reserved
Rapid screening of innate immune gene expression in zebrafish using reverse transcription - multiplex ligation-dependent probe amplification
<p>Abstract</p> <p>Background</p> <p>With the zebrafish increasingly being used in immunology and infectious disease research, there is a need for efficient molecular tools to evaluate immune gene expression in this model species. RT-MLPA (reverse transcription - multiplex ligation-dependent probe amplification) provides a sensitive and reproducible method, in which fluorescently labelled amplification products of unique lengths are produced for a defined set of target transcripts. The method employs oligonucleotide probes that anneal to adjacent sites on a target sequence and are then joined by a heat-stable ligase. Subsequently, multiplex PCR with universal primers gives rise to amplicons that can be analyzed with standard sequencing equipment and relative quantification software. Allowing the simultaneous quantification of around 40 selected markers in a one-tube assay, RT-MLPA is highly useful for high-throughput screening applications.</p> <p>Findings</p> <p>We employed a dual-colour RT-MLPA probe design for chemical synthesis of probe pairs for 34 genes involved in Toll-like receptor signalling, transcriptional activation of the immune response, cytokine and chemokine production, and antimicrobial defence. In addition, six probe pairs were included for reference genes unaffected by infections in zebrafish. First, we established assay conditions for adult zebrafish infected with different strains of <it>Mycobacterium marinum </it>causing acute and chronic disease. Addition of competitor oligonucleotides was required to achieve peak heights in a similar range for genes with different expression levels. For subsequent analysis of embryonic samples it was necessary to adjust the amounts of competitor oligonucleotides, as the expression levels of several genes differed to a large extent between adult and embryonic tissues. Assay conditions established for one-day-old <it>Salmonella typhimurium</it>-infected embryos could be transferred without further adjustment to five-day-old <it>M. marinum</it>-infected larvae. RT-MLPA results were compared with results of previous transcriptome analyses and with real-time PCR data, demonstrating a good correlation between all expression analysis methods.</p> <p>Conclusions</p> <p>The RT-MLPA assay developed in this study provides a rapid, cheap, and robust analysis tool for simultaneous quantification of a set of 34 innate immune response genes. With adjustment of conditions, the assay is suitable for infection studies in both adult and embryonic zebrafish. Application of RT-MLPA will facilitate high-throughput screening of immune responses in the zebrafish model.</p
- …