55 research outputs found

    Exclusive neuronal expression of SUCLA2 in the human brain

    Get PDF
    SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex

    Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review

    Get PDF
    Background: Urinary tract infection (UTI) is one of the most common sources of infection in children under five. Prompt diagnosis and treatment is important to reduce the risk of renal scarring. Rapid, cost-effective, methods of UTI diagnosis are required as an alternative to culture. Methods: We conducted a systematic review to determine the diagnostic accuracy of rapid tests for detecting UTI in children under five years of age. Results: The evidence supports the use of dipstick positive for both leukocyte esterase and nitrite (pooled LR+ = 28.2, 95% CI: 17.3, 46.0) or microscopy positive for both pyuria and bacteriuria (pooled LR+ = 37.0, 95% CI: 11.0, 125.9) to rule in UTI. Similarly dipstick negative for both LE and nitrite (Pooled LR- = 0.20, 95% CI: 0.16, 0.26) or microscopy negative for both pyuria and bacteriuria (Pooled LR- = 0.11, 95% CI: 0.05, 0.23) can be used to rule out UTI. A test for glucose showed promise in potty-trained children. However, all studies were over 30 years old. Further evaluation of this test may be useful. Conclusion: Dipstick negative for both LE and nitrite or microscopic analysis negative for both pyuria and bacteriuria of a clean voided urine, bag, or nappy/pad specimen may reasonably be used to rule out UTI. These patients can then reasonably be excluded from further investigation, without the need for confirmatory culture. Similarly, combinations of positive tests could be used to rule in UTI, and trigger further investigation

    On the Effect of Thermodynamic Equilibrium on the Assembly Efficiency of Complex Multi-Layered Virus-Like Particles (VLP): the Case of Rotavirus VLP

    Get PDF
    Previous studies have reported the production of malformed virus-like-particles (VLP) in recombinant host systems. Here we computationally investigate the case of a large triple-layered rotavirus VLP (RLP). In vitro assembly, disassembly and reassembly data provides strong evidence of microscopic reversibility of RLP assembly. Light scattering experimental data also evidences a slow and reversible assembly untypical of kinetic traps, thus further strengthening the fidelity of a thermodynamically controlled assembly. In silico analysis further reveals that under favourable conditions particles distribution is dominated by structural subunits and completely built icosahedra, while other intermediates are present only at residual concentrations. Except for harshly unfavourable conditions, assembly yield is maximised when proteins are provided in the same VLP protein mass composition. The assembly yield decreases abruptly due to thermodynamic equilibrium when the VLP protein mass composition is not obeyed. The latter effect is more pronounced the higher the Gibbs free energy of subunit association is and the more complex the particle is. Overall this study shows that the correct formation of complex multi-layered VLPs is restricted to a narrow range of association energies and protein concentrations, thus the choice of the host system is critical for successful assembly. Likewise, the dynamic control of intracellular protein expression rates becomes very important to minimize wasted proteins

    Effect of blood donation on iron stores as evaluated by serum ferritin

    No full text

    Decoupled black hole accretion and quenching : the relationship between BHAR, SFR and quenching in Milky Way- and Andromeda-mass progenitors since z=2.5

    Get PDF
    We investigate the relationship between the black hole accretion rate (BHAR) and star formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 to 2.5. We source galaxies from the K-s-band-selected ZFOURGE survey, which includes multiwavelength data spanning 0.3-160 mu m. We use decomposition software to split the observed spectral energy distributions (SEDs) of our galaxies into their active galactic nuclei (AGNs) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison with BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find that, as the progenitors evolve their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 +/- 0.11, while the M31-mass progenitors are 0.39 +/- 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray-/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star formation is predominantly driven by luminous AGN feedback (i.e. high BHARs)
    corecore