26 research outputs found

    A novel ÎĽCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability

    Get PDF
    Corals build reefs through accretion of calcium carbonate (CaCO3) skeletons, but net reef growth also depends on bioerosion by grazers and borers and on secondary calcification by crustose coralline algae and other calcifying invertebrates. However, traditional field methods for quantifying secondary accretion and bioerosion confound both processes, do not measure them on the same time-scale, or are restricted to 2D methods. In a prior study, we compared multiple environmental drivers of net erosion using pre- and post-deployment micro-computed tomography scans (ÎĽCT; calculated as the % change in volume of experimental CaCO3 blocks) and found a shift from net accretion to net erosion with increasing ocean acidity. Here, we present a novel ÎĽCT method and detail a procedure that aligns and digitally subtracts pre- and post-deployment ÎĽCT scans and measures the simultaneous response of secondary accretion and bioerosion on blocks exposed to the same environmental variation over the same time-scale. We tested our method on a dataset from a prior study and show that it can be used to uncover information previously unattainable using traditional methods. We demonstrated that secondary accretion and bioerosion are driven by different environmental parameters, bioerosion is more sensitive to ocean acidity than secondary accretion, and net erosion is driven more by changes in bioerosion than secondary accretion

    Development of an intervention to increase adherence to nebuliser treatment in adults with cystic fibrosis: CFHealthHub

    Get PDF
    Background Cystic fibrosis (CF) is a life-limiting genetic condition in which daily therapies to maintain lung health are critical, yet treatment adherence is low. Previous interventions to increase adherence have been largely unsuccessful and this is likely due to a lack of focus on behavioural evidence and theory alongside input from people with CF. This intervention is based on a digital platform that collects and displays objective nebuliser adherence data. The purpose of this paper is to identify the specific components of an intervention to increase and maintain adherence to nebuliser treatments in adults with CF with a focus on reducing effort and treatment burden. Methods Intervention development was informed by the Behaviour Change Wheel (BCW) and person-based approach (PBA). A multidisciplinary team conducted qualitative research to inform a needs analysis, selected, and refined intervention components and methods of delivery, mapped adherence-related barriers and facilitators, associated intervention functions and behaviour change techniques, and utilised iterative feedback to develop and refine content and processes. Results Results indicated that people with CF need to understand their treatment, be able to monitor adherence, have treatment goals and feedback and confidence in their ability to adhere, have a treatment plan to develop habits for treatment, and be able to solve problems around treatment adherence. Behaviour change techniques were selected to address each of these needs and were incorporated into the digital intervention developed iteratively, alongside a manual and training for health professionals. Feedback from people with CF and clinicians helped to refine the intervention which could be tailored to individual patient needs. Conclusions The intervention development process is underpinned by a strong theoretical framework and evidence base and was developed by a multidisciplinary team with a range of skills and expertise integrated with substantial input from patients and clinicians. This multifaceted development strategy has ensured that the intervention is usable and acceptable to people with CF and clinicians, providing the best chance of success in supporting people with CF with different needs to increase and maintain their adherence. The intervention is being tested in a randomised controlled trial across 19 UK sites

    Fossil proxies of near-shore sea surface temperatures and seasonality from the late Neogene Antarctic shelf

    Get PDF
    We evaluate the available palaeontological and geochemical proxy data from bivalves, bryozoans, silicoflagellates, diatoms and cetaceans for sea surface temperature (SST) regimes around the nearshore Antarctic coast during the late Neogene. These fossils can be found in a number of shallow marine sedimentary settings from three regions of the Antarctic continent, the northern Antarctic Peninsula, the Prydz Bay region and the western Ross Sea. Many of the proxies suggest maximum spring–summer SSTs that are warmer than present by up to 5 °C, which would result in reduced seasonal sea ice. The evidence suggests that the summers on the Antarctic shelf during the late Neogene experienced most of the warming, while winter SSTs were little changed from present. Feedbacks from changes in summer sea ice covermay have driven much of the lateNeogene ocean warming seen in stratigraphic records. Synthesized late Neogene and earliest Quaternary Antarctic shelf proxy data are compared to the multi-model SST estimates of the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Despite the fragmentary geographical and temporal context for the SST data, comparisons between the SSTwarming in each of the three regions represented in the marine palaeontological record of theAntarctic shelf and the PlioMIP climate simulations show a good concordance
    corecore