198 research outputs found

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung

    Too little but not too late: Results of a literature review to improve routine immunization programs in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, immunization services have been the center of renewed interest with increased funding to improve services, acceleration of the introduction of new vaccines, and the development of a health systems approach to improve vaccine delivery. Much of the credit for the increased attention is due to the work of the GAVI Alliance and to new funding streams. If routine immunization programs are to take full advantage of the newly available resources, managers need to understand the range of proven strategies and approaches to deliver vaccines to reduce the incidence of diseases. In this paper, we present strategies that may be used at the sub-national level to improve routine immunization programs.</p> <p>Methods</p> <p>We conducted a systematic review of studies and projects reported in the published and gray literature. Each paper that met our inclusion criteria was rated based on methodological rigor and data were systematically abstracted. Routine-immunization – specific papers with a methodological rigor rating of greater than 60% and with conclusive results were reported.</p> <p>Results</p> <p>Greater than 11,000 papers were identified, of which 60 met our inclusion criteria and 25 papers were reported. Papers were grouped into four strategy approaches: bringing immunizations closer to communities (n = 11), using information dissemination to increase demand for vaccination (n = 3), changing practices in fixed sites (n = 4), and using innovative management practices (n = 7).</p> <p>Conclusion</p> <p>Immunization programs are at a historical crossroads in terms of developing new funding streams, introducing new vaccines, and responding to the global interest in the health systems approach to improving immunization delivery. However, to complement this, actual service delivery needs to be strengthened and program managers must be aware of proven strategies. Much was learned from the 25 papers, such as the use of non-health workers to provide numerous services at the community level. However it was startling to see how few papers were identified and in particular how few were of strong scientific quality. Further well-designed and well-conducted scientific research is warranted. Proposed areas of additional research include integration of additional services with immunization delivery, collaboration of immunization programs with new partners, best approaches to new vaccine introduction, and how to improve service delivery.</p

    Widespread Hypomethylation Occurs Early and Synergizes with Gene Amplification during Esophageal Carcinogenesis

    Get PDF
    Although a combination of genomic and epigenetic alterations are implicated in the multistep transformation of normal squamous esophageal epithelium to Barrett esophagus, dysplasia, and adenocarcinoma, the combinatorial effect of these changes is unknown. By integrating genome-wide DNA methylation, copy number, and transcriptomic datasets obtained from endoscopic biopsies of neoplastic progression within the same individual, we are uniquely able to define the molecular events associated progression of Barrett esophagus. We find that the previously reported global hypomethylation phenomenon in cancer has its origins at the earliest stages of epithelial carcinogenesis. Promoter hypomethylation synergizes with gene amplification and leads to significant upregulation of a chr4q21 chemokine cluster and other transcripts during Barrett neoplasia. In contrast, gene-specific hypermethylation is observed at a restricted number of loci and, in combination with hemi-allelic deletions, leads to downregulatation of selected transcripts during multistep progression. We also observe that epigenetic regulation during epithelial carcinogenesis is not restricted to traditionally defined “CpG islands,” but may also occur through a mechanism of differential methylation outside of these regions. Finally, validation of novel upregulated targets (CXCL1 and 3, GATA6, and DMBT1) in a larger independent panel of samples confirms the utility of integrative analysis in cancer biomarker discovery

    Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads

    Get PDF
    Areas of co-occurrence between two species (sympatry) are often thought to arise in regions where abiotic conditions are conducive to both species and are therefore intermediate between regions where either species occurs alone (allopatry). Depending on historical factors or interactions between species, however, sympatry might not differ from allopatry, or, alternatively, sympatry might actually be more extreme in abiotic conditions relative to allopatry. Here, we evaluate these three hypothesized patterns for how sympatry compares to allopatry in abiotic conditions. We use two species of congeneric spadefoot toads, Spea multiplicata and S. bombifrons, as our study system. To test these hypotheses, we created ecological niche models (specifically using Maxent) for both species to create a map of the joint probability of occurrence of both species. Using the results of these models, we identified three types of locations: two where either species was predicted to occur alone (i.e., allopatry for S. multiplicata and allopatry for S. bombifrons) and one where both species were predicted to co-occur (i.e., sympatry). We then compared the abiotic environment between these three location types and found that sympatry was significantly hotter and drier than the allopatric regions. Thus, sympatry was not intermediate between the alternative allopatric sites. Instead, sympatry occurred at one extreme of the conditions occupied by both species. We hypothesize that biotic interactions in these extreme environments facilitate co-occurrence. Specifically, hybridization between S. bombifrons females and S. multiplicata males may facilitate co-occurrence by decreasing development time of tadpoles. Additionally, the presence of alternative food resources in more extreme conditions may preclude competitive exclusion of one species by the other. This work has implications for predicting how interacting species will respond to climate change, because species interactions may facilitate survival in extreme habitats

    HFE Gene Variants Modify the Association between Maternal Lead Burden and Infant Birthweight: A Prospective Birth Cohort Study in Mexico City, Mexico

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neonatal growth is a complex process involving genetic and environmental factors. Polymorphisms in the hemochromatosis (<it>HFE</it>) iron regulatory genes have been shown to modify transport and toxicity of lead which is known to affect birth weight.</p> <p>Methods</p> <p>We investigated the role of <it>HFE C282Y</it>, <it>HFE H63 D</it>, and transferrin <it>(TF) P570 S </it>gene variants in modifying the association of lead and infant birthweight in a cohort of Mexican mother-infant pairs. Subjects were initially recruited between 1994-1995 from three maternity hospitals in Mexico City and 411 infants/565 mothers had archived blood available for genotyping. Multiple linear regression models, stratified by either maternal/infant <it>HFE </it>or <it>TF </it>genotype and then combined with interaction terms, were constructed examining the association of lead and birthweight after controlling for covariates.</p> <p>Results</p> <p>3.1%, 16.8% and 17.5% of infants (N = 390) and 1.9%, 14.5% and 18.9% of mothers (N = 533) carried the <it>HFE C282Y</it>, <it>HFE H63D</it>, and <it>TF P570 S </it>variants, respectively. The presence of infant <it>HFE H63 D </it>variants predicted 110.3 g (95% CI -216.1, -4.6) decreases in birthweight while maternal <it>HFE H63 D </it>variants predicted reductions of 52.0 g (95% CI -147.3 to 43.2). Interaction models suggest that both maternal and infant <it>HFE H63 D </it>genotype may modify tibia lead's effect on infant birthweight in opposing ways. In our interaction models, maternal <it>HFE H63 D </it>variant carriers had a negative association between tibia lead and birthweight.</p> <p>Conclusions</p> <p>These results suggest that the <it>HFE H63 D </it>genotype modifies lead's effects on infant birthweight in a complex fashion that may reflect maternal-fetal interactions with respect to the metabolism and transport of metals.</p

    Comparative Genomic and Transcriptomic Characterization of the Toxigenic Marine Dinoflagellate Alexandrium ostenfeldii

    Get PDF
    Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins

    Current findings for recurring mutations in acute myeloid leukemia

    Get PDF
    The development of acute myeloid leukemia (AML) is a multistep process that requires at least two genetic abnormalities for the development of the disease. The identification of genetic mutations in AML has greatly advanced our understanding of leukemogenesis. Recently, the use of novel technologies, such as massively parallel DNA sequencing or high-resolution single-nucleotide polymorphism arrays, has allowed the identification of several novel recurrent gene mutations in AML. The aim of this review is to summarize the current findings for the identification of these gene mutations (Dnmt, TET2, IDH1/2, NPM1, ASXL1, etc.), most of which are frequently found in cytogenetically normal AML. The cooperative interactions of these molecular aberrations and their interactions with class I/II mutations are presented. The prognostic and predictive significances of these aberrations are also reviewed
    corecore