192 research outputs found

    Estimating the value of the metal-ligand bond dissociation enthalpy (D) (M-L) for adducts using empirical equations supported by TG data

    Get PDF
    In this work is presented and tested (for 106 adducts, mainly of the zinc group halides) two empirical equations supported in TG data to estimate the value of the metal-ligand bond dissociation enthalpy for adducts: (M-O) = t(i) / gamma if t(i) (M-O) = (t(i) / gamma) - 7,75 . 10(-2). t(i) if t(i) > 420 K, In this empirical equations, t(i) is the thermodynamic temperature of the beginning of the thermal decomposition of the adduct, as determined by thermogravimetry, and gamma is a constant factor that is function of the metal halide considered and of the number of ligands, hut is not dependant of the ligand itself. To half of the tested adducts the difference between experimental and calculated values was less than 5%. To about 80% of the tested adducts, the difference between the experimental (calorimetric) and the calculated (using the proposed equations) values are less than 15%.22331631

    The Eag potassium channel as a new prognostic marker in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian cancer is the second most common cancer of the female genital tract in the United Kingdom (UK), accounting for 6% of female deaths due to cancer. This cancer is associated with poor survival and there is a need for new treatments in addition to existing chemotherapy to improve survival. Potassium (K<sup>+</sup>) channels have been shown to be overexpressed in various cancers where they appear to play a role in cell proliferation and progression.</p> <p>Objectives</p> <p>To determine the expression of the potassium channels Eag and HERG in ovarian cancer tissue and to assess their role in cell proliferation.</p> <p>Methods</p> <p>The expression of Eag and HERG potassium channels was examined in an ovarian cancer tissue microarray. Their role in cell proliferation was investigated by blocking voltage-gated potassium channels in an ovarian cancer cell line (SK-OV-3).</p> <p>Results</p> <p>We show for the first time that high expression of Eag channels in ovarian cancer patients is significantly associated with poor survival (P = 0.016) unlike HERG channel expression where there was no correlation with survival. There was also a significant association of Eag staining with high tumour grade (P = 0.014) and presence of residual disease (P = 0.011). Proliferation of SK-OV-3 cells was significantly (P < 0.001) inhibited after treatment with voltage gated K<sup>+ </sup>channel blockers.</p> <p>Conclusion</p> <p>This novel finding demonstrates a role for Eag as a prognostic marker for survival in patients with ovarian cancer.</p
    corecore