208 research outputs found

    Passive parametric macromodeling by using Sylvester state-space realizations

    Get PDF
    A judicious choice of the state-space realization is required in order to account for the assumed smoothness of the state-space matrices with respect to the design parameters. The direct parameterization of poles and residues may be not appropriate, due to their possible non-smooth behavior with respect to design parameters. This is avoided in the proposed technique, by converting the pole-residue description to a Sylvester description which is computed for each root macromodel. This technique is used in combination with suitable parameterizing schemes for interpolating a set of state-space matrices, and hence the poles and residues indirectly, in order to build accurate parametric macromodels. The key features of the present approach are first the choice of a proper pivot matrix and second, finding a well-conditioned solution of a Sylvester equation. Stability and passivity are guaranteed by construction over the design space of interest. Pertinent numerical examples validate the proposed Sylvester technique for parametric macromodeling

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page

    (C, A, B)-PAIRS IN INFINITE DIMENSIONS

    No full text

    Old and new perspectives on the positive-real-lemma in systems and control theory

    No full text
    This essay is based on an invited plenary lecture presented at the 1998 GAMM conference in Bremen, Germany. This was a survey of the historical development of the positive-real lemma, a key result in central theory: from its beginnings in 1962 up to June 1998. Particular emphasis was placed on Me physical motivation and the importance of this lemma to applications in control theory. The inclusion of recent extensions to infinite-dimensional systems represents the author's own research interests
    corecore