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Abstract. A judicious choice of the state-space realization is required
in order to account for the assumed smoothness of the state-space matri-
ces with respect to the design parameters. The direct parameterization
of poles and residues may be not appropriate, due to their possible non-
smooth behavior with respect to design parameters. This is avoided in
the proposed technique, by converting the a pole-residue description to a
Sylvester description which is computed for each root macromodel.This
technique is used in combination with suitable parameterizing schemes
for interpolating a set of state-space matrices, and hence the poles and
residues indirectly, in order to build accurate parametric macromod-
els. The key features of the present approach are first the choice of a
proper pivot matrix and second, finding a well-conditioned solution of a
Sylvester equation. Stability and passivity are guaranteed by construc-
tion over the design space of interest. Pertinent numerical examples val-
idate the proposed Sylvester technique for parametric macromodeling.

Keywords: Sylvester equation, parametric macromodel, state-space ma-
trices, interpolation.

1 Introduction

Multiple simulations are often required during a typical design process of elec-
tromagnetic (EM) systems, design space exploration, design optimization, and
sensitivity analysis for different design parameter values (e.g., layout features).
Parametric macromodels are valuable tools for efficiently and accurately per-
forming these design activities, while avoiding new measurements or simulations
at each new parameter configuration. Parameterized macromodels are multivari-
ate models that describe the complex behavior of EM systems, typically char-
acterized by frequency (or time) and several geometrical and physical design
parameters, such as layout or substrate features. Recently, parametric macro-
modeling techniques able to guarantee overall stability and passivity have been
proposed in [1, 3, 2, 4]. Unfortunately, these methods are sensitive to issues re-
lated to the interpolation of state-space matrices [5], such as the smoothness of
the state-space matrices as a function of the parameters.

The direct parameterization of poles and residues is in general not appro-
priate, due to their possible non-smooth behavior with respect to the design
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parameters. This is avoided in the proposed technique, where a suitable set of
state-space matrices is parametric and, hence, the poles and residues indirectly.
A conversion from the pole-residue description obtained by means of vector fit-
ting (VF) to a Sylvester description is computed for each root macromodel. This
avoids the direct parameterization of poles and residues, when interpolating a set
of state-space matrices in order to build a parametric macromodel. The present
technique is able to deal accurately with bifurcation effects of poles and residues
[6].

The key features of the Sylvester realization technique are first the choice of a
pivot or reference matrix and second, the obtention of a well-conditioned solution
to the Sylvester equation. Since the same pivot matrix is used for all state-space
realizations of the root macromodels, smooth variations of the state-space ma-
trices with respect to the design parameters can be expected. The state-space
matrices obtained from the Sylvester realization are used to obtain matrix solu-
tions of the linear matrix inequalities (LMIs) pertaining to the positive-real or
bounded-real lemma, and this information is then used to perform a passivity
preserving interpolation of the state-space matrices. The computations can be
carried out using the solution of LMIs or algebraic Riccati equations (AREs)
to generate a descriptor state-space format that preserves positive-realness or
bounded-realness. Finally, suitable interpolation schemes are used to build ac-
curate parametric macromodels which preserve stability and passivity.

Pertinent numerical examples validate the proposed Sylvester realization
technique for macromodeling based on interpolation of state-space matrices.

2 Parametric Macromodeling

We start with a set of passive models Sk, k = 1 · · ·N with given minimal
realizations

Sk ≡
[
Ak Bk

Ck Dk

]
(1)

state space equations

ẋ = Akx+Bku (2)

y = Ckx+Dku (3)

and transfer functions

Hk(s) = Ck(sI −Ak)−1Bk +Dk (4)

In this paper we suppose that all realizations Sk have the same McMillan degree
n and number of ports m ≤ n. This means that all Ak, Bk, Ck, Dk matrices have
respective sizes n×n, n×m,m×n,m×m. We further suppose that all matrices
Ak are Hurwitz stable i.e., all their poles are in the open left halfplane.
We aim at obtaining a generic parametric realization of the form

S(g) ≡
[
A(g) B(g)
C(g) D(g)

]
(5)



with vectorial parameter g such that the models Sk can be considered as snap-
shots of S(g) generated by freezing the parameter g at the fixed values gk. The
objective is to construct a guaranteed passive macromodel S̃(g) by means of the
discrete models Sk, such that S̃(g) is passive, smooth and close to S(g)1 in some
sense.

3 State-Space Realizations For Parametric
Macromodeling

To obtain accurate parametric macromodels by interpolation of the state-space
matrices, the choice of the state-space realization is fundamental.

In this section, we will discuss the well-known Gilbert realization, the bal-
anced realization and then the proposed novel Sylvester realization, preceded by
a subsection on passive parametric interpolation.

3.1 Gilbert Realization

The minimal state-space realization problem for linear time invariant (LTI) sys-
tems was first stated by Gilbert [7], who gave an algorithm for transforming a
transfer function into a system of differential equations. The Gilbert approach
is based on partial-fraction expansions.

H(s) = R0,pk
+

N∑
n=1

Rn,pk

s− zn,pk

(6)

where Rn,pk
and s − zn,pk

are respectively the model residues and poles, with
R0,pk

being the direct coupling constant. The poles and the residues are stamped
directly in the A(p) and C(p) matrices using the Gilbert realization [7]. It is well-
known that model poles and residues are very sensitive to even small variations
of the design parameters, resulting in quite irregular variations of each pole in
the design space. Since poles and residues may present a highly non-smooth be-
havior with respect to the design parameters, achieving a reasonable accuracy in
parametric macromodels built by interpolation of state-space matrices becomes
difficult, due to the fact that pole and residue trajectories as a function of p are
not well defined.

3.2 Balanced Realization

A minimal and stable realization is called balanced, if the controllability and
observability Gramians are equal and diagonal [8]. Every minimal system can
be brought into balanced form. The balanced realization can be implemented
using the Matlab function balreal. This routine uses the eigendecomposition

1 The exact generic realization S(g) is analytically unknown in the sense that for each
new value of g an oracle (or black-box function) has to be consulted.



of the product of the observability and controllability Gramians to construct the
balancing transformation matrix.

The most interesting properties of balanced realizations is associated with the
uniqueness property of the balancing transformation [9]. When the eigenvalues
(real and nonnegative) of the product of the controllability and observability
Gramians, are distinct, then the balancing transformation matrix is unique. If, on
the other hand, two or more eigenvalues are repeated, then their corresponding
eigenvectors can be rotated arbitrarily in the corresponding eigenspace. Thus
as stated in [5, 9], uniqueness is guaranteed up to a sign and it may affect the
smoothness of the state-space matrices as functions of the design parameters.

3.3 Passive Interpolation of LTI Systems

Passivity is an important property to satisfy because stable, but not passive
macromodels can produce unstable systems when connected to other stable,
even passive, loads.
As a first approach we opt for straightforward passive interpolation. Since each
macromodel Sk is passive, by the positive real lemma [10] we know that this is
the case if there exists a positive definite symmetric matrix Pk such that the
Linear Matrix Inequality (LMI) [11]

Lk =

[
AT

k Pk + PkAk PkBk − CT
k

BT
k Pk − Ck −Dk −DT

k

]
≤ 0 (7)

is satisfied. Now consider a positive interpolation kernel [12] K(gk,g) = µk(g)
satisfying

µk(g) ≥ 0, µk(gl) = δk,l (8)

It is clear that the interpolatory parametric LMI

L(g) =

N∑
k=1

µk(g)Lk (9)

is semi-negative definite, and hence if we parameterize all entries of the PkAk,
PkBk, Ck, Dk, Pk matrices as

P (g)A(g) =

N∑
k=1

µk(g)PkAk

P (g)B(g) =

N∑
k=1

µk(g)PkBk

C(g) =

N∑
k=1

µk(g)Ck

D(g) =

N∑
k=1

µk(g)Dk



P (g) =

N∑
k=1

µk(g)Pk (10)

it is seen by inspection that the parametric realization

S̃(g) ≡
[
A(g) B(g)
C(g) D(g)

]
(11)

thus obtained is passive with LMI solution matrix P (g).

3.4 Uniform Approach by Sylvester Equations

The issues with the passive parametric interpolation procedure when using the
Gilbert and balanced realizations are twofold. First, there are 5 interpolation
equations (10) to be satisfied. Second, and most important, although the inter-
polation technique yields (by construction) the discrete macro-models Sk for g =
gk, it is not at all sure that the interpolated matricesA(g), B(g), C(g), D(g), P (g)
will behave smoothly between the nodes gk. The reason for this is that mini-
mal realizations are all equivalent modulo a similarity transformation, i.e., two
realizations related by [

Ã B̃

C̃ D̃

]
=

[
X−1AX X−1B
CX D

]
(12)

where X is any nonsingular matrix, yield the same transfer function

H(s) = C(sI −A)−1B +D = C̃(sI − Ã)−1B̃ + D̃ (13)

In order to install uniformity we propose the state-space feedback realization

ẋ = Ax+ Bkv (14)

y = Ĉkx+Dkv (15)

v = −Fx+ u (16)

where A is a fixed n × n pivot matrix and F is a fixed m × n state-space
feedback matrix. This realization can be written as

Rk ≡
[

A−BkF Bk

Ĉk −DkF Dk

]
=

[
A−BkF Bk

Ck Dk

]
(17)

For Rk and Sk to be equivalent, we need the existence of nonsingular matrices
Xk such that

A−BkF = X−1
k AkXk (18)

Bk = X−1
k Bk (19)

Ck = CkXk (20)



Eliminating (19) from (18) we obtain the Sylvester equation

AkXk −XkA +BkF = 0 (21)

for the unknown matrix Xk. We need the following

Theorem 1. The Sylvester equation (21) has a unique nonsingular solution Xk

provided the pair (Ak, Bk) is controllable, the pair (A,F) is observable, and the
intersection of the eigenspectra of Ak and A is empty.

Proof. See [13, 14].

The Sylvester equations are routinely solved by the Matlab function lyap.

Remark 1. The Sylvester realizations Rk, given the pivot matrix A and feed-
back matrix F, are all unique by construction. For the choice of A we can take a
block-diagonal or block-Jordan matrix[14] which never shares eigenvalues with
any of the Ak matrices. This can be accomplished by choosing the eigenvalues
of A close to the imaginary axis (see also the numerical simulations). The choice
of F is subject to the requirement that the pair (A,F) has to be observable. In
some cases such as the Gilbert [7] or Vector Fitting [15] realization, all matri-
ces Bk are equal, and then a judicious choice for F is F = BT

k . More generally
speaking, F can be chosen quite freely, or its choice can be imbedded in the
overall Sylvester algorithm [16]. Next, we parameterize the new LMI’s[

(A−BkF)T P̃k + P̃k(A−BkF) P̃kBk −CT
k

BT
k P̃k −Ck −Dk −DT

k

]
≤ 0 (22)

as in Section 3.3, four last equations of (10), i.e.,

P̃ (g)B(g) =

N∑
k=1

µk(g)P̃kBk

C(g) =

N∑
k=1

µk(g)Ck

D(g) =

N∑
k=1

µk(g)Dk

P̃ (g) =

N∑
k=1

µk(g)P̃k (23)

The first equation of (10) has no counterpart in equations (23), since it is
easy to show that

P̃ (g)[A−B(g)F] =

N∑
k=1

µk(g)P̃k[A−BkF] (24)



Finally, the parametric Sylvester realization is then simply

R(g) ≡
[

A−B(g)F B(g)
C(g) D(g)

]
(25)

This also implies that we can track the pole trajectories of the parametric system
easily as the eigenvalues of the matrix A −B(g)F, which depends only on the
parameterization of B(g), i.e.

B(g) =

(
N∑

k=1

µk(g)P̃k

)−1 N∑
k=1

µk(g)P̃kBk (26)

Remark 2. Note that, even if passivity is not required, the Sylvester realizations
Rk can be very useful for parameterization. Suppose the interpolation kernel
K(gk,g) = µk(g) is not necessarily positive, but satisfies partition of unity2, i.e.,∑

k

µk(g) = 1, µk(gl) = δk,l (27)

Then it is clear that the interpolation procedure

B(g) =

N∑
k=1

µk(g)Bk

C(g) =

N∑
k=1

µk(g)Ck

D(g) =

N∑
k=1

µk(g)Dk (28)

is a very simple way to generate a parametric macromodel.

4 Solving LMI’s

4.1 Convex programming

LMI’s such as (7) are convex formulations and can always be solved by convex
optimization [17], without needing ARE solvers and/or Hamiltonian matrices. A
standard trick in convex optimization is to transform the problem that must be
solved into an equivalent problem, which is in a standard form that can be solved
by a generic solver. Recently developed parser-solvers, such as YALMIP [18],
CVX [19], CVXMOD [20], and Pyomo [21] automate this reduction process. A

2 Note that multilinear interpolation satisfies both positivity and partition of unity.



general approach called disciplined convex programming [22, 23] has emerged as
an effective methodology for organizing and implementing parser-solvers for con-
vex optimization. In disciplined convex programming, the user combines built-in
functions in specific, convexity-preserving ways. The constraints and objective
must also follow certain rules. As long as the user conforms to these require-
ments, the parser can easily verify the convexity of the problem and automat-
ically transform it to a standard form for transfer to the solver. Note that the
parser-solvers CVX (which runs in Matlab ) and CVXMOD (Python) use the
disciplined convex programming approach. For example, in our case we solve
LMI (7) by means of the CVX code

cvx_begin sdp

variable P(n,n) symmetric

P >= 0

[ A’*P+P*A P*B-C’;

... B’*P-C -D-D’] <= 0

cvx_end

4.2 Riccati equations

An LMI of the form (7), i.e.,[
ATP + PA PB − CT

BTP − C −D −DT

]
≤ 0 (29)

can be solved by converting to the Lur’e equations [24]

ATP + PA = −QTQ

PB − CT = −QTW

WTW = D +DT (30)

In the case D +DT > 0, the matrices W and Q can be eliminated, yielding the
algebraic Riccati equation

ATP + PA+ (PB − CT )(D +DT )−1(BTP − C) = 0 (31)

Hence, if D+DT > 0, the system is positive real if the algebraic Riccati equation
(31) has a stabilizing solution P [25].
If D + DT is only semi-positive definite, i.e., det(D + DT ) = 0, the situation
is much more complicated and the approaches in [26, 27] may provide solutions.
However, the Riccati approach may also be rescued by means of the following
theorem:

Theorem 2. Frequency inversion theorem : Let H(s) = C(sIn − A)−1B + D
be minimal and positive-real with A Hurwitz. Then G(s) = C̃(sIn − Ã)−1B̃ + D̃
with

Ã = A−1 B̃ = A−1B

C̃ = −CA−1 D̃ = D − CA−1B

is also positive real and admits the same P matrix as H(s).



Proof. It is straightforward to see that when A is Hurwitz, then A−1 is also
Hurwitz and vice versa. Also, it is simple to see by substitution that G(s) =
H(1/s). By positive-realness, H(s) admits a factorization [24] :

H(s) +H(−s)T = M(−s)TM(s) ∀ s ∈ C+ (32)

Since the mapping s 7→ 1/s is one-to-one in (extended) C+, it follows that

G(s) +G(−s)T = H(1/s) +H(−1/s)T

= M(−1/s)TM(1/s) ∀ s ∈ C+

In other words G(s) is positive-real. To prove it admits the same P as H(s) we
write the Lur’e equations

ATP + PA = −QTQ

PB − CT = −QTW

D +DT = WTW

Define Q = −QA−1 and W = W −QA−1B. It is easy to see that

ÃTP + PÃ = −QTQ (33)

Also
−QTW = A−T

[
QTW −QTQA−1B

]
= PB̃ − C̃T (34)

and finally
D̃ + D̃T =WTW (35)

Note that D̃ = H(0) and hence Theorem 2 maps the positive-realness problem
from s = ∞ to s = 0. Of course it could be that both H(∞) + H(∞)T and
H(0) + H(0)T are singular, in which case the approach in [26] may provide
solution.

5 Numerical Simulations

In the following examples, we show the importance of the realization issue, and
validate the proposed Sylvester approach, by comparing them with the standard
Gilbert and balanced realizations.

5.1 Two coupled microstrip with Variable Length

Two coupled microstrips can be modeled starting from per-unit-length parame-
ters. The cross section is shown in Fig.1.

Figure.1 shows its cross section. The length L are considered as variable
parameters in addition to frequency. Their corresponding ranges are shown in
Table 1.



Fig. 1. Two coupled microstrip line.

Table 1. PARAMETERS OF THE COUPLED MICROSTRIPS

Parameter Min Max

Frequency (freq) 20 MHz 8 GHz
Length (L) 2.5 cm 3 cm

The scattering parameters were obtained over a validation grid of 200 × 11
samples, for frequency and length respectively. We have built root macromodels
for 6 values of the spacing by means of VF, each with an order 11.

As described in Section 3.4, a pivot matrix and a feedback matrix is chosen
such that a well-conditioned solution is obtained for the Sylvester equation (21).

Also, since the eigenvalues of the pivot matrix and those of the root macro-
models obtained from Gilbert realization must not be the same, we choose the
poles very close to the imaginary axis as shown in Fig.2. The feedback matrix is
chosen as column vectors of 1’s, 2’s and 0’s similar to VF technique. A similar-
ity transformation is then performed using the Sylvester solution to obtain the
state-space matrices of the Sylvester realization.

Next the realizations are converted to a passive descriptor state-space form
using LMI (7) as described in Section 4 with the help of CVX. Finally, a bivariate
macromodel is obtained by linear interpolation of the corresponding state-space
matrices using the Sylvester realization as shown in Fig.3.

The maximum absolute error over the validation grid for the parametric
macromodel of the scattering matrix is bounded by −56 dB. Note that a very
good agreement is obtained between the original data and the proposed paramet-
ric macromodeling technique. The parametric macromodel captures the behavior
of the system very accurately over the entire range of the length.

Figure.4 shows that direct parameterization of the poles should be avoided
due to potentially non-smooth behavior with respect to the design parameters
with Gilbert realization.

In Figure.5 it is shown that the maximum absolute error is very small for the
Sylvester but it is not satisfactory for the Gilbert and balanced real realization.



Fig. 2. Eigenvalues of the pivot matrix and the root macromodels obtained from Gilbert
realization.

Fig. 3. Magnitude of the bivariate macromodel S11(s, L) (Sylvester realization for each
root macromodel).



Fig. 4. Magnitude of the bivariate macromodel S11(s, L) (Gilbert realization form for
each root macromodel).

Fig. 5. CM: Absolute error comparison for the different realizations.



5.2 Hairpin bandpass microwave filter

In this example, a hairpin bandpass filter with the layout shown in Figure.6 is
modeled. The relative permittivity of the substrate is 9.9, and its thickness is
equal to 0.635 mm.

Fig. 6. Layout of the folded stub notch filter.

The spacing S1 and the length L of the stub are chosen as design variables
in addition to frequency. Their corresponding ranges are shown in Table 2.

Table 2. PARAMETERS OF THE HAIRPIN BANDPASS MICROWAVE FILTER

Parameter Min Max

Frequency (freq) 1.5 GHz 3.5 GHz
Length (L) 12 mm 12.5 mm
Spacing (S1) 0.27 mm 0.32 mm

The scattering parameters have been computed by means of the advanced
design system (ADS) over a grid of 11 × 7 samples, for length and spacing
respectively. We have built root macromodels for 6× 4 values of the length and
spacing respectively by means of VF, each with an order 13. Next the realization
approaches as described in Section 3.3 is used to obtain Sylvester realized state-
space form for each root macromodel. Then the realizations are converted to a
passive descriptor state-space form using LMI (7) as described in Section 4 with
the help of CVX.

Finally, a trivariate macromodel is obtained by multilinear interpolation of
the corresponding state-space matrices as shown in Figure.7.

The maximum absolute error over the validation grid for the parametric
macromodel of the scattering matrix is bounded by −58 dB. It can be noted that
a very good agreement is obtained between the original data and the proposed
parametric macromodeling technique. The parametric macromodel captures the
behavior of the system very accurately over the entire design space.

Figure.8 shows the parametric macromodel using balanced real realization.
It is seen by comparing with Figure.7 that the behavior is very erratic.



Fig. 7. Magnitude of the trivariate macromodel S12(s, L, S) for L = 12.05 mm
(Sylvester realization for each root macromodel).

Fig. 8. Magnitude of the trivariate macromodel S12(s, L, S) for L = 12.05 mm (Bal-
anced realization for each root macromodel).



For the hairpin filter it can be also noted from the Figure.9 that the maximum
absolute error is very small for the Sylvester realization but it is not satisfactory
for Gilbert realization and balanced real realization.

Fig. 9. Absolute error comparison for the different realizations.

6 Conclusion

This paper proposes a novel state-space realization for parametric macromodel-
ing based on interpolation of state-space matrices. A good choice of the state-
space realization is required to account for the generally assumed smoothness of
the state-space matrices with respect to the parameters. Suitable interpolation
schemes along with Sylvester realization are used to interpolate a set of root
state-space matrices in order to build accurate parametric macromodels. There
are two essential aspects for this novel realization: 1) to find a proper pivot
matrix and 2) to obtain a well-conditioned solution for a Sylvester equation.
The numerical examples and related comparison results show that the proposed
Sylvester realization provides very accurate parametric macromodel with a low
computational cost. The properties of the system like stability and passivity
can be preserved with the help of LMIs and by the use of proper interpolation
schemes.
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