45 research outputs found

    Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4

    Get PDF
    Background: Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective: This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods: We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1-4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results: Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions:Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition

    The intergenerational association between parents' problem gambling and impulsivity-hyperactivity/inattention behaviors in children

    Full text link
    Despite the well-established association between problem gambling and ADHD core categories of impulsivity-hyperactivity and inattention, the link between parents’ problem gambling and impulsivity-hyperactivity/inattention (IH/I) behaviors in children has not been investigated. This study investigated the association between parents’ problem gambling and children’s IH/I behaviors while controlling for potential confounding variables. A population-based prospective cohort followed-up from kindergarten to age 30, the Quebec Longitudinal Study of Kindergarten Children (QLSKC), provided data over three generations. Among 1358 participants at age 30, parents with a child aged 1 year or older (N=468; Mean age=4.65 years; SD=2.70) were selected. Generalized Linear Models included measures of grandparents’ and parents’ problem gambling, parents’ IH/I behaviors in childhood, and a host of risk factors and comorbidities to predict IH/I in children. Intergenerational bivariate associations were observed between grandparents’ problem gambling, parents’ IH/I in childhood and problem gambling at age 30, and between parents’ IH/I, problem gambling, and children’s IH/I behaviors. Parents’ problem gambling predicted children’s IH/I behaviors above and beyond the effects of covariates such as family and socioeconomic characteristics, alcohol and drug use, depression symptoms and parents’ gambling involvement. Parents’ IH/I behaviors in childhood also predicted children’s IH/I and had a moderating, enhancing effect on parents’ problem gambling association with their offspring’s IH/I behaviors. Problem gambling is a characteristic of parents’ mental health that is distinctively associated with children’s IH/I behaviors, above and beyond parents’ own history of IH/I and of typically related addictive, psychopathological or socioeconomic risk factors and comorbidities
    corecore