7,259 research outputs found
Effect of surface nanostructure on temperature programmed reaction spectroscopy: First-principles kinetic Monte Carlo simulations of CO oxidation at RuO2(110)
Using the catalytic CO oxidation at RuO2(110) as a showcase, we employ
first-principles kinetic Monte Carlo simulations to illustrate the intricate
effects on temperature programmed reaction spectroscopy data brought about by
the mere correlations between the locations of the active sites at a
nanostructured surface. Even in the absence of lateral interactions, this
nanostructure alone can cause inhomogeneities that cannot be grasped by
prevalent mean-field data analysis procedures, which thus lead to wrong
conclusions on the reactivity of the different surface species.Comment: 4 pages including 3 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Non-Adiabatic Vibrational Damping of Molecular Adsorbates: Insights into Electronic Friction and the Role of Electronic Coherence
We present a perturbation approach rooted in time-dependent
density-functional theory to calculate electron hole (eh)-pair excitation
spectra during the non-adiabatic vibrational damping of adsorbates on metal
surfaces. Our analysis for the benchmark systems CO on Cu(100) and Pt(111)
elucidates the surprisingly strong influence of rather short electronic
coherence times. We demonstrate how in the limit of short electronic coherence
times, as implicitly assumed in prevalent quantum nuclear theories for the
vibrational lifetimes as well as electronic friction, band structure effects
are washed out. Our results suggest that more accurate lifetime or
chemicurrent-like experimental measurements could characterize the electronic
coherence.Comment: Article as accepted for publication in Physical Review Letter
First-principles statistical mechanics study of the stability of a sub-nanometer thin surface oxide in reactive environments: CO oxidation at Pd(100)
We employ a multiscale modeling approach to study the surface structure and
composition of a Pd(100) model catalyst in reactive environments. Under gas
phase conditions representative of technological CO oxidation (~1 atm, 300-600
K) we find the system on the verge of either stabilizing sub-nanometer thin
oxide structures or CO adlayers at the surface. Under steady-state operation
this suggests the presence or continuous formation and reduction of oxidic
patches at the surface, which could be key to understand the observable
catalytic function.Comment: 4 pages including 2 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
A General Effective Theory for Dense Quark Matter
A general effective action for quark matter at nonzero temperature and/or
nonzero density is derived. Irrelevant quark modes are distinguished from
relevant quark modes, and hard from soft gluon modes, by introducing two
separate cut-offs in momentum space, one for quarks, , and one for
gluons, . Irrelevant quark modes and hard gluon modes are then
exactly integrated out in the functional integral representation of the QCD
partition function. Depending on the specific choice for and
, the resulting effective action contains well-known effective
actions for hot and/or dense quark matter, for instance the ``Hard Thermal
Loop'' (HTL) or the ``Hard Dense Loop'' (HDL) action, as well as the
high-density effective theory proposed by Hong and others.Comment: 10 pages, 6 figures, contribution to proceedings of SEWM 200
CO oxidation on Pd(100) at technologically relevant pressure conditions: A first-principles kinetic Monte Carlo study
The possible importance of oxide formation for the catalytic activity of
transition metals in heterogenous oxidation catalysis has evoked a lively
discussion over the recent years. On the more noble transition metals (like Pd,
Pt or Ag) the low stability of the common bulk oxides suggests primarily
sub-nanometer thin oxide films, so-called surface oxides, as potential
candidates that may be stabilized under gas phase conditions representative of
technological oxidation catalysis. We address this issue for the Pd(100) model
catalyst surface with first-principles kinetic Monte Carlo (kMC) simulations
that assess the stability of the well-characterized (sqrt{5} x sqrt{5})R27
surface oxide during steady-state CO oxidation. Our results show that at
ambient pressure conditions the surface oxide is stabilized at the surface up
to CO:O2 partial pressure ratios just around the catalytically most relevant
stoichiometric feeds (p(CO):p(O2) = 2:1). The precise value depends sensitively
on temperature, so that both local pressure and temperature fluctuations may
induce a continuous formation and decomposition of oxidic phases during
steady-state operation under ambient stoichiometric conditions.Comment: 13 pages including 5 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Ionic conductivity and relaxation dynamics in plastic-crystals with nearly globular molecules
We have performed a dielectric investigation of the ionic charge transport
and the relaxation dynamics in plastic-crystalline 1-cyano-adamantane (CNA) and
in two mixtures of CNA with the related plastic crystals adamantane or
2-adamantanon. Ionic charge carriers were provided by adding 1% of Li salt. The
molecules of these compounds have nearly globular shape and, thus, the
so-called revolving-door mechanism assumed to promote ionic charge transport
via molecular reorientations in other PC electrolytes, should not be active
here. Indeed, a comparison of the dc resistivity and the reorientational
alpha-relaxation times in the investigated PCs, reveals complete decoupling of
both dynamics. Similar to other PCs, we find a significant mixing-induced
enhancement of the ionic conductivity. Finally, these solid-state electrolytes
reveal a second relaxation process, slower than the alpha-relaxation, which is
related to ionic hopping. Due to the mentioned decoupling, it can be
unequivocally detected and is not superimposed by the reorientational
contributions as found for most other ionic conductors.Comment: 9 pages, 7 figure
Blue-fluorescence of NADPH as an indicator of marine primary production
Nicotinamide Adenine Dinucleotide Phosphate (NADPH) is the primary product of photosynthesisand can therefore serve as an indicator of biomass and photosynthetic activity. Pure NADPH whichis the reduced form of NADP shows an absorption maximum at 340 nm and a maximum of emissionat 460 nm. NADPH concentrations in terrestrial vegetation have already been studied since1957 in great detail with optical methods. However, its potential as a biomass parameter of oceanicphytoplankton which can be assessed in situ and remotely with fluorescence spectroscopy has notyet been investigated.In this paper, we report on laboratory investigations of the blue-fluorescence spectrum in algalsuspensions of Chlorella and Thalassiosira when excited with UV-A light. It is shown that cell densitiesof about 106 per litre as they are typically found under natural conditions are too low for precisedetection of NADPH fluorescence, while concentrated samples with 108-1010 cells per litre exhibitsignificant blue-fluorescence which can be related to NADPH. Inhibition of photosynthetic activityby addition of DCMU decreases the strength of blue-fluorescence remarkably. Since NADPHis an end product of photosynthesis, changes of PAR illumination levels should directly affect itsconcentration and hence the intensity of blue-fluorescence. However, no effect of illumination onblue-fluorescence could be observed in our study. Possible reasons of these observations are discussed,and perspectives for practical applications of the method used are proposed
The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity
We discuss various basic conceptual issues related to coarse graining flows
in quantum gravity. In particular the requirement of background independence is
shown to lead to renormalization group (RG) flows which are significantly
different from their analogs on a rigid background spacetime. The importance of
these findings for the asymptotic safety approach to Quantum Einstein Gravity
(QEG) is demonstrated in a simplified setting where only the conformal factor
is quantized. We identify background independence as a (the ?) key prerequisite
for the existence of a non-Gaussian RG fixed point and the renormalizability of
QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum
Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to
appear in General Relativity and Gravitatio
Electronic friction-based vibrational lifetimes of molecular adsorbates: Beyond the independent atom approximation
We assess the accuracy of vibrational damping rates of diatomic adsorbates on
metal surfaces as calculated within the local-density friction approximation
(LDFA). An atoms-in-molecules (AIM) type charge partitioning scheme accounts
for intra-molecular contributions and overcomes the systematic underestimation
of the non-adiabatic losses obtained within the prevalent independent atom
approximation. The quantitative agreement obtained with theoretical and
experimental benchmark data suggests the LDFA-AIM as an efficient and reliable
approach to account for electronic dissipation in ab initio molecular dynamics
simulations of surface chemical reactions.Comment: 5 pages including 2 figure
- …