68 research outputs found

    RickA Expression Is Not Sufficient to Promote Actin-Based Motility of Rickettsia raoultii

    Get PDF
    Background: Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG). The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. Methodology/Principal Findings: Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading) of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. Conclusion/Significance: These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsi

    Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Rickettsia </it>genus includes 25 validated species, 17 of which are proven human pathogens. Among these, the pathogenicity varies greatly, from the highly virulent <it>R. prowazekii</it>, which causes epidemic typhus and kills its arthropod host, to the mild pathogen <it>R. africae</it>, the agent of African tick-bite fever, which does not affect the fitness of its tick vector.</p> <p>Results</p> <p>We evaluated the clonality of <it>R. africae </it>in 70 patients and 155 ticks, and determined its genome sequence, which comprises a circular chromosome of 1,278,540 bp including a <it>tra </it>operon and an unstable 12,377-bp plasmid. To study the genetic characteristics associated with virulence, we compared this species to <it>R. prowazekii</it>, <it>R. rickettsii </it>and <it>R. conorii</it>. <it>R. africae </it>and <it>R. prowazekii </it>have, respectively, the less and most decayed genomes. Eighteen genes are present only in <it>R. africae </it>including one with a putative protease domain upregulated at 37°C.</p> <p>Conclusion</p> <p>Based on these data, we speculate that a loss of regulatory genes causes an increase of virulence of rickettsial species in ticks and mammals. We also speculate that in <it>Rickettsia </it>species virulence is mostly associated with gene loss.</p> <p>The genome sequence was deposited in GenBank under accession number [GenBank: <ext-link ext-link-type="gen" ext-link-id="NZ_AAUY01000001">NZ_AAUY01000001</ext-link>].</p

    Genome Sequence of Rickettsia bellii Illuminates the Role of Amoebae in Gene Exchanges between Intracellular Pathogens

    Get PDF
    The recently sequenced Rickettsia felis genome revealed an unexpected plasmid carrying several genes usually associated with DNA transfer, suggesting that ancestral rickettsiae might have been endowed with a conjugation apparatus. Here we present the genome sequence of Rickettsia bellii, the earliest diverging species of known rickettsiae. The 1,552,076 base pair–long chromosome does not exhibit the colinearity observed between other rickettsia genomes, and encodes a complete set of putative conjugal DNA transfer genes most similar to homologues found in Protochlamydia amoebophila UWE25, an obligate symbiont of amoebae. The genome exhibits many other genes highly similar to homologues in intracellular bacteria of amoebae. We sought and observed sex pili-like cell surface appendages for R. bellii. We also found that R. bellii very efficiently multiplies in the nucleus of eukaryotic cells and survives in the phagocytic amoeba, Acanthamoeba polyphaga. These results suggest that amoeba-like ancestral protozoa could have served as a genetic “melting pot” where the ancestors of rickettsiae and other bacteria promiscuously exchanged genes, eventually leading to their adaptation to the intracellular lifestyle within eukaryotic cells

    Nanobacteria Are Mineralo Fetuin Complexes

    Get PDF
    “Nanobacteria” are nanometer-scale spherical and ovoid particles which have spurred one of the biggest controversies in modern microbiology. Their biological nature has been severely challenged by both geologists and microbiologists, with opinions ranging from considering them crystal structures to new life forms. Although the nature of these autonomously replicating particles is still under debate, their role in several calcification-related diseases has been reported. In order to gain better insights on this calciferous agent, we performed a large-scale project, including the analysis of “nanobacteria” susceptibility to physical and chemical compounds as well as the comprehensive nucleotide, biochemical, proteomic, and antigenic analysis of these particles. Our results definitively ruled out the existence of “nanobacteria” as living organisms and pointed out the paradoxical role of fetuin (an anti-mineralization protein) in the formation of these self-propagating mineral complexes which we propose to call “nanons.” The presence of fetuin within renal calculi was also evidenced, suggesting its role as a hydroxyapatite nucleating factor

    Crenarchaeal CdvA Forms Double-Helical Filaments Containing DNA and Interacts with ESCRT-III-Like CdvB

    Get PDF
    International audienceBACKGROUND: The phylum Crenarchaeota lacks the FtsZ cell division hallmark of bacteria and employs instead Cdv proteins. While CdvB and CdvC are homologues of the eukaryotic ESCRT-III and Vps4 proteins, implicated in membrane fission processes during multivesicular body biogenesis, cytokinesis and budding of some enveloped viruses, little is known about the structure and function of CdvA. Here, we report the biochemical and biophysical characterization of the three Cdv proteins from the hyperthermophilic archaeon Metallospherae sedula. METHODOLOGY/PRINCIPAL FINDINGS: Using sucrose density gradient ultracentrifugation and negative staining electron microscopy, we evidenced for the first time that CdvA forms polymers in association with DNA, similar to known bacterial DNA partitioning proteins. We also observed that, in contrast to full-lengh CdvB that was purified as a monodisperse protein, the C-terminally deleted CdvB construct forms filamentous polymers, a phenomenon previously observed with eukaryotic ESCRT-III proteins. Based on size exclusion chromatography data combined with detection by multi-angle laser light scattering analysis, we demonstrated that CdvC assembles, in a nucleotide-independent way, as homopolymers resembling dodecamers and endowed with ATPase activity in vitro. The interactions between these putative cell division partners were further explored. Thus, besides confirming the previous observations that CdvB interacts with both CdvA and CdvC, our data demonstrate that CdvA/CdvB and CdvC/CdvB interactions are not mutually exclusive. CONCLUSIONS/SIGNIFICANCE: Our data reinforce the concept that Cdv proteins are closely related to the eukaryotic ESCRT-III counterparts and suggest that the organization of the ESCRT-III machinery at the Crenarchaeal cell division septum is organized by CdvA an ancient cytoskeleton protein that might help to coordinate genome segregation

    Etude de la transcription de Rickettsia conorii dans différentes conditions in vitro et in vivo

    No full text
    AIX-MARSEILLE2-BU Méd/Odontol. (130552103) / SudocSudocFranceF

    Apport de l'analyse post-génomique de "Tropheryma whipplei" à la compréhension de son mode de vie

    No full text
    AIX-MARSEILLE2-BU Méd/Odontol. (130552103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Intervening Sequence Acquired by Lateral Gene Transfer in Tropheryma whipplei Results in 23S rRNA Fragmentation

    No full text
    Completion of Tropheryma whipplei genome sequencing may provide insights into the evolution of the molecular mechanisms underlying the pathogenicity of this microorganism. The first postgenomic application was the successful design of a comprehensive culture medium that allows axenic growth of this bacterium, which is particularly recalcitrant to cultivation. This achievement in turn permitted analysis of T. whipplei RNA without contaminating eukaryotic nucleic acids. To obtain high-quality RNA, several extraction methods were compared, but under all conditions tested an atypical profile was observed. By using a Northern blot assay we demonstrated that an insertion sequence previously described in T. whipplei 23S rRNA is in fact an intervening sequence excised during maturation. This cleavage could involve an RNase III identified in the genome of this microorganism. Among the bacteria with a 23S rRNA insertion sequence, T. whipplei is the only gram-positive microorganism. We present phylogenetic evidence that this mobile genetic element was acquired by lateral gene transfer from another enteric bacterium
    corecore