6 research outputs found

    Therapeutic bullfrog oil-based nanoemulsion for oral application: Development, characterization and stability

    Get PDF
    The aim of this study was to develop, optimize, and characterize a stable therapeutic bullfrog oil based nanoemulsion for oral application using a rational experimental design approach. The optimized oral nanoemulsion contained 0.2 % sodium benzoate and 0.02 % propyl-paraben as preservatives; 0.1 % sucralose and 0.4 % acesulfam K as sweeteners and 0.1 % tutti-frutti as flavoring to mask the unpleasant organoleptic characteristics of bullfrog oil. The oral O/W-nanoemulsion showed the droplet size, PDI, zeta potential, and pH of 410 ± 8nm, 0.20 ± 0.02, –38 ± 2.5 mV, and 6.43 ± 0.05, respectively. The optimized oral nanoemulsion showed a milky single-phase and optimal physical stability at 25 °C for 90 days. Indeed, higher oxidation induction time and lower formation of peroxides in the oral nanoemulsion were responsible for improving its stability. A therapeutic delivery system containing bullfrog oil for oral application was successfully developed and optimized with ideal thermo-oxidative stability

    Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities

    No full text
    A polysaccharide-enriched extract obtained from Lentinula edodes was submitted to several purification steps to separate three different D-glucans with β-(1→6), β-(1→3),(1→6) and α-(1→3) linkages, being characterized through GC–MS, FT-IR, NMR, SEC and colorimetric/fluorimetric determinations. Moreover, in vitro hypocholesterolemic, antitumoral, anti-inflammatory and antioxidant activities were also tested. Isolated glucans exerted HMGCR inhibitory activity, but only β-(1→6) and β-(1→3),(1→6) fractions showed DPPH scavenging capacity. Glucans were also able to lower IL-1β and IL-6 secretion by LPS-activated THP-1/M cells and showed cytotoxic effect on a breast cancer cell line that was not observed on normal breast cells. These in vitro results pointed important directions for further in vivo studies, showing different effects of each chemical structure of the isolated glucans from shiitake mushrooms.This research was supported by national R + D program from the Spanish Ministry of Science and Innovation (Project AGL2014-56211-R) and the regional program from the Community of Madrid, Spain (S2013/ABI-2728). Part of this study was also financed by the Brazilian funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Finance Code 001 and the Fundação Araucária.Peer reviewe

    Thermo-Oxidative Stability Evaluation of Bullfrog (Rana catesbeiana Shaw) Oil

    No full text
    Bullfrog oil (BO), a natural product obtained from recycling of adipose tissue from the amphibian Rana catesbeiana Shaw, has been recently evaluated as a therapeutic activity ingredient. This work aimed to evaluate the long-term and accelerated thermal oxidative stabilities of this product, which is a promising raw material for emulsion technology development. BO was extracted from amphibian adipose tissue at 70 °C with a yield of 60% ± 0.9%. Its main fatty acid compounds were oleic (30.0%) and eicosapentaenoic (17.6%) acids. Using titration techniques, BO showed peroxide, acid, iodine and saponification indices of 1.92 mEq·O2/kg, 2.95 mg·KOH/g oil, 104.2 g I2/100 g oil and 171.2 mg·KOH/g oil, respectively. In order to improve the accelerated oxidative stability of BO, synthetic antioxidants butylhydroxytoluene (BHT) and buthylhydroxyanisole (BHA) were used. The addition of BHT increased the oxidation induction time compared to the pure oil, or the oil containing BHA. From the results, the best oil-antioxidant mixture and concentration to increase the oxidative stability and allow the oil to be a stable raw material for formulation purposes was derived

    New Trends on Antineoplastic Therapy Research: Bullfrog (Rana catesbeiana Shaw) Oil Nanostructured Systems

    No full text
    Bullfrog oil is a natural product extracted from the Rana catesbeiana Shaw adipose tissue and used in folk medicine for the treatment of several diseases. The aim of this study was to evaluate the extraction process of bullfrog oil, to develop a suitable topical nanoemulsion and to evaluate its efficacy against melanoma cells. The oil samples were obtained by hot and organic solvent extraction processes and were characterized by titration techniques and gas chromatography mass spectrometry (GC-MS). The required hydrophile-lipophile balance and the pseudo-ternary phase diagram (PTPD) were assessed to determine the emulsification ability of the bullfrog oil. The anti-tumoral activity of the samples was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for normal fibroblast (3T3) and melanoma (B16F10) cell lines. Both extraction methods produced yielded around 60% and the oil was mainly composed of unsaturated compounds (around 60%). The bullfrog oil nanoemulsion obtained from PTPD presented a droplet size of about 390 nm and polydispersity = 0.05 and a zeta potential of about −25 mV. Both the bullfrog oil itself and its topical nanoemulsion did not show cytotoxicity in 3T3 linage. However, these systems showed growth inhibition in B16F10 cells. Finally, the bullfrog oil presented itself as a candidate for the development of pharmaceutical products free from cytotoxicity and effective for antineoplastic therapy
    corecore