282 research outputs found

    The Impact of Emerging Safety and Effectiveness Evidence on the Use of Physician-administered Drugs: The Case of Bevacizumab for Breast Cancer

    Get PDF
    Spending on physician-administered drugs is high and uses not approved by the U.S. Food and Drug Administration (FDA) are frequent. While these drugs may be targets of future policy efforts to rationalize use, little is known regarding how physicians respond to emerging safety and effectiveness evidence

    The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver

    Get PDF
    LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver

    Cancer health disparities in racial/ethnic minorities in the United States

    Get PDF
    There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA—African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.Fil: Zavala, Valentina A.. University of California; Estados UnidosFil: Bracci, Paige M.. University of California; Estados UnidosFil: Carethers, John M.. University of Michigan; Estados UnidosFil: Carvajal Carmona, Luis. University of California at Davis; Estados UnidosFil: Coggins, Nicole B.. University of California at Davis; Estados UnidosFil: Cruz Correa, Marcia R.. Universidad de Puerto Rico; Puerto RicoFil: Davis, Melissa. No especifíca;Fil: de Smith, Adam J.. University of California; Estados UnidosFil: Dutil, Julie. Ponce Research Institute; Puerto RicoFil: Figueiredo, Jane C.. Cedars Sinai Medical Center; Estados UnidosFil: Fox, Rena. University of California; Estados UnidosFil: Graves, Kristi D.. University Of Georgetown; Estados UnidosFil: Gomez, Scarlett Lin. University of California; Estados UnidosFil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Neuhausen, Susan L.. No especifíca;Fil: Newman, Lisa. No especifíca;Fil: Nguyen, Tung. University of California; Estados UnidosFil: Palmer, Julie R.. National Institutes of Health; Estados UnidosFil: Palmer, Nynikka R.. University of California; Estados UnidosFil: Pérez Stable, Eliseo J.. National Institutes of Health; Estados UnidosFil: Piawah, Sorbarikor. University of California; Estados UnidosFil: Rodriquez, Erik J.. National Institutes of Health; Estados UnidosFil: Sanabria Salas, María Carolina. Instituto Nacional de Cancerología; ColombiaFil: Schmit, Stephanie L.. University of Southern California; Estados UnidosFil: Serrano Gomez, Silvia J.. Instituto Nacional de Cancerología; ColombiaFil: Stern, Mariana Carla. University of Southern California; Estados UnidosFil: Weitzel, Jeffrey. No especifíca;Fil: Yang, Jun J.. St. Jude Children’s Research Hospital; Estados UnidosFil: Zabaleta, Jovanny. No especifíca;Fil: Ziv, Elad. University of California; Estados UnidosFil: Fejerman, Laura. University of California; Estados Unido

    Trauma Hemorrhagic Shock-Induced Lung Injury Involves a Gut-Lymph-Induced TLR4 Pathway in Mice

    Get PDF
    Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI) and multiple organ dysfunction syndrome (MODS). Since Toll-like receptors (TLR) act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R) injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS) mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT) mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD) lung permeability and myeloperoxidase (MPO) levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation

    Conserved and Distinct Modes of CREB/ATF Transcription Factor Regulation by PP2A/B56γ and Genotoxic Stress

    Get PDF
    Activating transcription factor 1 (ATF1) and the closely related proteins CREB (cyclic AMP resonse element binding protein) and CREM (cyclic AMP response element modulator) constitute a subfamily of bZIP transcription factors that play critical roles in the regulation of cellular growth, metabolism, and survival. Previous studies demonstrated that CREB is phosphorylated on a cluster of conserved Ser residues, including Ser-111 and Ser-121, in response to DNA damage through the coordinated actions of the ataxia-telangiectasia-mutated (ATM) protein kinase and casein kinases 1 and 2 (CK1/2). Here, we show that DNA damage-induced phosphorylation by ATM is a general feature of CREB and ATF1. ATF1 harbors a conserved ATM/CK cluster that is constitutively and stoichiometrically phosphorylated by CK1 and CK2 in asynchronously growing cells. Exposure to DNA damage further induced ATF1 phosphorylation on Ser-51 by ATM in a manner that required prior phosphorylation of the upstream CK residues. Hyperphosphorylated ATF1 showed a 4-fold reduced affinity for CREB-binding protein. We further show that PP2A, in conjunction with its targeting subunit B56γ, antagonized ATM and CK1/2-dependent phosphorylation of CREB and ATF1 in cellulo. Finally, we show that CK sites in CREB are phosphorylated during cellular growth and that phosphorylation of these residues reduces the threshold of DNA damage required for ATM-dependent phosphorylation of the inhibitory Ser-121 residue. These studies define overlapping and distinct modes of CREB and ATF1 regulation by phosphorylation that may ensure concerted changes in gene expression mediated by these factors
    corecore