1,828 research outputs found

    The Messy Nature of Fiber Spectra: Star-Quasar Pairs Masquerading as Dual Type 1 AGNs

    Full text link
    Theoretical studies predict that the most significant growth of supermassive black holes occurs in late-stage mergers, coinciding with the manifestation of dual active galactic nuclei (AGNs), and both major and minor mergers are expected to be important for dual AGN growth. In fact, dual AGNs in minor mergers should be signposts for efficient minor merger-induced SMBH growth for both the more and less massive progenitor. We identified two candidate dual AGNs residing in apparent minor mergers with mass ratios of \sim1:7 and \sim1:30. SDSS fiber spectra show broad and narrow emission lines in the primary nuclei of each merger while only a narrow [O III] emission line and a broad and prominent Hα\alpha/[N II] complex is observed in the secondary nuclei. The FWHMs of the broad Hα\alpha lines in the primary and secondary nuclei are inconsistent in each merger, suggesting that each nucleus in each merger hosts a Type 1 AGN. However, spatially-resolved LBT optical spectroscopy reveal rest-frame stellar absorption features, indicating the secondary sources are foreground stars and that the previously detected broad lines are likely the result of fiber spillover effects induced by the atmospheric seeing at the time of the SDSS observations. This study demonstrates for the first time that optical spectroscopic searches for Type 1/Type 1 pairs similarly suffer from fiber spillover effects as has been observed previously for Seyfert 2 dual AGN candidates. The presence of foreground stars may not have been clear if an instrument with more limited wavelength range or limited sensitivity had been used.Comment: 15 pages including appendix and references, 6 figures, 1 table. Accepted for publication in Ap

    Neural field model for measuring and reproducing time intervals

    Get PDF
    The continuous real-time motor interaction with our environment requires the capacity to measure and produce time intervals in a highly flexible manner. Recent neurophysiological evidence suggests that the neural computational principles supporting this capacity may be understood from a dynamical systems perspective: Inputs and initial conditions determine how a recurrent neural network evolves from a “resting state” to a state triggering the action. Here we test this hypothesis in a time measurement and time reproduction experiment using a model of a robust neural integrator based on the theoretical framework of dynamic neural fields. During measurement, the temporal accumulation of input leads to the evolution of a self-stabilized bump whose amplitude reflects elapsed time. During production, the stored information is used to reproduce on a trial-by-trial basis the time interval either by adjusting input strength or initial condition of the integrator. We discuss the impact of the results on our goal to endow autonomous robots with a human-like temporal cognition capacity for natural human-robot interactions.The work received financial support from FCT through the PhD fellowship PD/BD/128183/2016, the project ”Neurofield” (POCI-01-0145-FEDER-031393) and the research centre CMAT within the project UID/MAT/00013/2013

    Cation-promoted association of a regulatory and target protein is controlled by protein phosphorylation.

    Get PDF
    xiv, 302 hlm, 21 c

    Multi-wavelength observations of SDSS J105621.45+313822.1, a broad-line, low-metallicity AGN

    Full text link
    In contrast to massive galaxies with Solar or super-Solar gas phase metallicities, very few Active Galactic Nuclei (AGN) are found in low-metallicity dwarf galaxies. Such a population could provide insight into the origins of supermassive black holes. Here we report near-infrared spectroscopic and X-ray observations of SDSS J105621.45+313822.1, a low-mass, low-metallicity galaxy with optical narrow line ratios consistent with star forming galaxies but a broad Hα\alpha line and mid-infrared colors consistent with an AGN. We detect the [Si VI] 1.96μ\mum coronal line and a broad Paα\alpha line with a FWHM of 850±25850 \pm 25~km~s1^{-1}. Together with the optical broad lines and coronal lines seen in the SDSS spectrum, we confirm the presence of a highly accreting black hole with mass (2.2±1.3)×106(2.2 \pm 1.3) \times 10^{6}~M_{\odot}, with a bolometric luminosity of 1044\approx10^{44}~erg~s1^{-1} based on the coronal line luminosity, implying a highly accreting AGN. Chandra observations reveal a weak nuclear point source with LX,2-10 keV=(2.3±1.2)×1041L_{\textrm{X,2-10 keV}} = (2.3 \pm 1.2) \times 10^{41}~erg~s1^{-1}, 2\sim 2 orders of magnitude lower than that predicted by the mid-infrared luminosity, suggesting that the AGN is highly obscured despite showing broad lines in the optical spectrum. The low X-ray luminosity and optical narrow line ratios of J1056+3138 highlight the limitations of commonly employed diagnostics in the hunt for AGNs in the low metallicity low mass regime.Comment: 13 pages, 6 figures, accepted to Ap

    An Integrated Imaging Approach to the Study of Oxidative Stress Generation by Mitochondrial Dysfunction in Living Cells

    Get PDF
    BACKGROUND: The mechanisms of action of many environmental agents commonly involve oxidative stress resulting from mitochondrial dysfunction. Zinc is a common environmental metallic contaminant that has been implicated in a variety of oxidant-dependent toxicological responses. Unlike ions of other transition metals such as iron, copper, and vanadium, Zn(2+) does not generate reactive oxygen species (ROS) through redox cycling. OBJECTIVE: To characterize the role of oxidative stress in zinc-induced toxicity. METHODS: We used an integrated imaging approach that employs the hydrogen peroxide (H2O2)-specific fluorophore Peroxy Green 1 (PG1), the mitochondrial potential sensor 5,5 ,6,6 -tetrachloro-1,1 ,3,3 -tetraethylbenzimidazolylcarbocyanine iodide (JC-1), and the mitochondria-targeted form of the redox-sensitive genetically encoded fluorophore MTroGFP1 in living cells. RESULTS: Zinc treatment in the presence of the Zn(2+) ionophore pyrithione of A431 skin carcinoma cells preloaded with the H(2)O(2)-specific indicator PG1 resulted in a significant increase in H(2)O(2) production that could be significantly inhibited with the mitochondrial inhibitor carbonyl cyanide 3-chlorophenylhydrazone. Mitochondria were further implicated as the source of zinc-induced H(2)O(2) formation by the observation that exposure to zinc caused a loss of mitochondrial membrane potential. Using MTroGFP1, we showed that zinc exposure of A431 cells induces a rapid loss of reducing redox potential in mitochondria. We also demonstrated that zinc exposure results in rapid swelling of mitochondria isolated from mouse hearts. CONCLUSION: Taken together, these findings show a disruption of mitochondrial integrity, H(2)O(2) formation, and a shift toward positive redox potential in cells exposed to zinc. These data demonstrate the utility of real-time, live-cell imaging to study the role of oxidative stress in toxicological responses

    The mind's eye, looking inward? In search of executive control in internal attention shifting

    Full text link
    In studies of mental counting, participants are faster to increment a count that was just incremented (no-switch trial) than to increment a different count (switch trial). Investigators have attributed the effect to a shift in the internal focus of attention on switch trials. Here we report evidence for other bottom-up and top-down contributions. Two stimuli were mapped to each of two counts. The no-switch facilitation was greater when stimuli repeated than when they were different. Event-related potential (ERP) activity associated with repetitions was anterior to that associated with switching. Runs of no-switch trials elicited faster responses and frontal ERP activity. Runs of switches and large counts both elicited slow responses and reduced P300 amplitudes. Bottom-up processes may include priming on no-switch trials and conflict on switch trials. Top-down processes may control conflict, subvocal rehearsal, and the contents of working memory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73572/1/1469-8986.00059.pd
    corecore