25,173 research outputs found

    A comparison of broad iron emission lines in archival data of neutron star low-mass X-ray binaries

    Get PDF
    Relativistic X-ray disk-lines have been found in multiple neutron star low-mass X-ray binaries, in close analogy with black holes across the mass-scale. These lines have tremendous diagnostic power and have been used to constrain stellar radii and magnetic fields, often finding values that are consistent with independent timing techniques. Here, we compare CCD-based data from Suzaku with Fe K line profiles from archival data taken with gas-based spectrometers. In general, we find good consistency between the gas-based line profiles from EXOSAT, BeppoSAX and RXTE and the CCD data from Suzaku, demonstrating that the broad profiles seen are intrinsic to the line and not broad due to instrumental issues. However, we do find that when fitting with a Gaussian line profile, the width of the Gaussian can depend on the continuum model in instruments with low spectral resolution, though when the different models fit equally well the line widths generally agree. We also demonstrate that three BeppoSAX observations show evidence for asymmetric lines, with a relativistic disk-line model providing a significantly better fit than a Gaussian. We test this by using the posterior predictive p-value method, and bootstrapping of the spectra to show that such deviations from a Gaussian are unlikely to be observed by chance.Comment: 13 pages, 9 figures, accepted to Ap

    Literacy: A cultural influence on functional left-right differences in the inferior parietal cortex

    Get PDF
    The current understanding of hemispheric interaction is limited. Functional hemispheric specialization is likely to depend on both genetic and environmental factors. In the present study we investigated the importance of one factor, literacy, for the functional lateralization in the inferior parietal cortex in two independent samples of literate and illiterate subjects. The results show that the illiterate group are consistently more right-lateralized than their literate controls. In contrast, the two groups showed a similar degree of left-right differences in early speech-related regions of the superior temporal cortex. These results provide evidence suggesting that a cultural factor, literacy, influences the functional hemispheric balance in reading and verbal working memory-related regions. In a third sample, we investigated grey and white matter with voxel-based morphometry. The results showed differences between literacy groups in white matter intensities related to the mid-body region of the corpus callosum and the inferior parietal and parietotemporal regions (literate > illiterate). There were no corresponding differences in the grey matter. This suggests that the influence of literacy on brain structure related to reading and verbal working memory is affecting large-scale brain connectivity more than grey matter per se

    The Quiescent X-ray Spectrum of Accreting Black Holes

    Full text link
    The quiescent state is the dominant accretion mode for black holes on all mass scales. Our knowledge of the X-ray spectrum is limited due to the characteristic low luminosity in this state. Herein, we present an analysis of the sample of dynamically-confirmed stellar-mass black holes observed in quiescence in the \textit{Chandra/XMM-Newton/Suzaku} era resulting in a sample of 8 black holes with \sim 570 ks of observations. In contrast to the majority of AGN where observations are limited by contamination from diffuse gas, the stellar-mass systems allow for a clean study of the X-ray spectrum resulting from the accretion flow alone. The data are characterized using simple models. We find a model consisting of a power-law or thermal bremsstrahlung to both provide excellent descriptions of the data, where we measure Γ=2.06±0.03\rm \Gamma = 2.06 \pm 0.03 and kT=5.030.31+0.33keV\rm kT = 5.03^{+0.33}_{-0.31} keV respectively in the 0.3 -- 10 keV bandpass, at a median luminosity of Lx5.5×107LEdd\rm L_x \sim 5.5\times10^{-7} L_{Edd}. This result in discussed in the context of our understanding of the accretion flow onto stellar and supermassive black holes at low luminosities.Comment: 12 pages, 5 figures, 2 tables, MNRAS accepte

    Phases of granular segregation in a binary mixture

    Full text link
    We present results from an extensive experimental investigation into granular segregation of a shallow binary mixture in which particles are driven by frictional interactions with the surface of a vibrating horizontal tray. Three distinct phases of the mixture are established viz; binary gas (unsegregated), segregation liquid and segregation crystal. Their ranges of existence are mapped out as a function of the system's primary control parameters using a number of measures based on Voronoi tessellation. We study the associated transitions and show that segregation can be suppressed is the total filling fraction of the granular layer, CC, is decreased below a critical value, CcC_{c}, or if the dimensionless acceleration of the driving, γ\gamma, is increased above a value γc\gamma_{c}.Comment: 12 pages, 12 figures, submitted to Phys. Rev.

    A Rapidly Spinning Black Hole Powers the Einstein Cross

    Get PDF
    Observations over the past 20 years have revealed a strong relationship between the properties of the supermassive black hole (SMBH) lying at the center of a galaxy and the host galaxy itself. The magnitude of the spin of the black hole will play a key role in determining the nature of this relationship. To date, direct estimates of black hole spin have been restricted to the local Universe. Herein, we present the results of an analysis of \sim 0.5 Ms of archival Chandra observations of the gravitationally lensed quasar Q 2237+305 (aka the "Einstein-cross"), lying at a redshift of z = 1.695. The boost in flux provided by the gravitational lens allows constraints to be placed on the spin of a black hole at such high redshift for the first time. Utilizing state of the art relativistic disk reflection models, the black hole is found to have a spin of a=0.740.03+0.06a_* = 0.74^{+0.06}_{-0.03} at the 90% confidence level. Placing a lower limit on the spin, we find a0.65a_* \geq 0.65 (4σ\sigma). The high value of the spin for the 109 M\rm \sim 10^9~M_{\odot} black hole in Q 2237+305 lends further support to the coherent accretion scenario for black hole growth. This is the most distant black hole for which the spin has been directly constrained to date.Comment: 5 pages, 3 figures, 1 table, formatted using emulateapj.cls. Accepted for publication in ApJ

    Universal velocity distributions in an experimental granular fluid

    Full text link
    We present experimental results on the velocity statistics of a uniformly heated granular fluid, in a quasi-2D configuration. We find the base state, as measured by the single particle velocity distribution f(c)f(c), to be universal over a wide range of filling fractions and only weakly dependent on all other system parameters. There is a consistent overpopulation in the distribution's tails, which scale as fexp(const.×c3/2)f\propto\exp(\mathrm{const.}\times c^{-3/2}). More importantly, the high probability central region of f(c)f(c), at low velocities, deviates from a Maxwell-Boltzmann by a second order Sonine polynomial with a single adjustable parameter, in agreement with recent theoretical analysis of inelastic hard spheres driven by a stochastic thermostat. To our knowledge, this is the first time that Sonine deviations have been measured in an experimental system.Comment: 13 pages, 15 figures, with minor corrections, submitted to Phys. Rev.
    corecore