428 research outputs found

    Equilibrium solubility versus intrinsic dissolution: characterization of lamivudine, stavudine and zidovudine for BCS classification

    Get PDF
    Solubility and dissolution rate of drugs are of major importance in pre-formulation studies of pharmaceutical dosage forms. The solubility improvement allows the drugs to be potential biowaiver candidates and may be a good way to develop more dose-efficient formulations. Solubility behaviour of lamivudine, stavudine and zidovudine in individual solvents (under pH range of 1.2 to 7.5) was studied by equilibrium solubility and intrinsic dissolution methods. In solubility study by equilibrium method (shake-flask technique), known amounts of drug were added in each media until to reach saturation and the mixture was subjected to agitation of 150 rpm for 72 hours at 37 ºC. In intrinsic dissolution test, known amount of each drug was compressed in the matrix of Wood's apparatus and subjected to dissolution in each media with agitation of 50 rpm at 37 ºC. In solubility by equilibrium method, lamivudine and zidovudine can be considered as highly soluble drugs. Although stavudine present high solubility in pH 4.5, 6.8, 7.5 and water, the solubility determination in pH 1.2 was not possible due stability problems. Regarding to intrinsic dissolution, lamivudine and stavudine present high speed of dissolution. Considering a boundary value presented by Yu and colleagues (2004), all drugs studied present high solubility characteristics in intrinsic dissolution method. Based on the obtained results, intrinsic dissolution seems to be superior for solubility studies as an alternative method for biopharmaceutical classification purposes

    Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation

    Get PDF
    Copyright © 2011 Springer. The final publication is available at www.springerlink.comWe consider the dynamics of small networks of coupled cells. We usually assume asymmetric inputs and no global or local symmetries in the network and consider equivalence of networks in this setting; that is, when two networks with different architectures give rise to the same set of possible dynamics. Focussing on transitive (strongly connected) networks that have only one type of cell (identical cell networks) we address three questions relating the network structure to dynamics. The first question is how the structure of the network may force the existence of invariant subspaces (synchrony subspaces). The second question is how these invariant subspaces can support robust heteroclinic attractors. Finally, we investigate how the dynamics of coupled cell networks with different structures and numbers of cells can be related; in particular we consider the sets of possible “inflations” of a coupled cell network that are obtained by replacing one cell by many of the same type, in such a way that the original network dynamics is still present within a synchrony subspace. We illustrate the results with a number of examples of networks of up to six cells

    Developing methods to compare tablet formulations of atorvastatin

    Get PDF
    Atorvastatin (ATV) is an antilipemic drug of great interest to the pharmaceutical industry. ATV does not appear in the monographs of Brazilian pharmacopoeia, and analytical methodologies for its determination have been validated. The chromatographic conditions used included: RP-18 column-octadecylsilane (250 x 4.6 mm, 5 mm), detection at 238 nm, mobile phase containing 0.1% phosphoric acid and acetonitrile (35:65% v/v), flow at 1.5 mL min-1, oven temperature at 30ºC, and injection volume of 10 mL. ATV is classified as a class II product, according to the biopharmaceutical classification system. As such, a dissolution test was proposed to evaluate pharmaceutical formulations on the market today, under the following conditions: water as a dissolution medium, 1000 mL as a volume, paddle apparatus at a rotation speed of 50 rpm, 80% (Q) in 15 minutes with UV spectrophotometer readings at 238 nm. In the pattern condition proposed as the ideal dissolution test, which appropriately differentiates amongst formulations, the generic product was not considered pharmaceutically equivalent; however, in other less differential dissolution methods, which also fall within appropriate legal parameters, this product could come to be regarded as generic.Atorvastatina (ATV) é um fármaco antilipêmico de grande interesse para a indústria farmacêutica. ATV não apresenta monografia na Farmacopéia Brasileira e metodologias analíticas para sua determinação foram validadas. As condições cromatográficas utilizadas foram: coluna RP-18-octadecilsilano (250 x 4.6 mm, 5 mm), detecção em 238 nm, fase móvel contendo ácido fosfórico 0,1% e acetonitrila (35:65% v/v), fluxo de 1,5 mL min-1, temperatura do forno de 30 ºC e volume de injeção de 10 mL. ATV é classificada como um fármaco de classe II, de acordo com o sistema de classificação biofarmacêutica (SCB). Como tal, um teste de dissolução foi proposto para avaliar as formulações farmacêuticas do mercado atual, sob as seguintes condições: água como meio de dissolução, volume de 1000 mL, aparato pá, velocidade de rotação de 50 rpm, 80% (Q) em 15 minutos com leituras espectrofotômetro UV a 238 nm. Na condição padrão proposta para o teste de dissolução, o qual seria capaz de diferenciar apropriadamente as formulações farmacêuticas, o produto genérico não foi considerado equivalente farmacêutico. No entanto, em outros métodos de dissolução menos discriminativos, que também seriam considerados apropriados pelos parâmetros legais, este produto pode vir a ser considerado como genérico
    corecore