216 research outputs found

    Strong founder effect in Drosophila pseudoobscura colonizing New Zealand from North America

    Get PDF
    The North American native species Drosophila pseudoobscura was first identified in New Zealand in the last few decades. Here, we have studied the genetic consequences of its spread across the Pacific Ocean. Using 10 microsatellites that are highly variable in North American populations, we found that the New Zealand population has substantially fewer alleles, a much lower average heterozygosity, and significantly different allele frequencies at these loci. We have discussed the relative sensitivity of these parameters for detecting the founding event. X-linked loci were more strongly differentiated between continents than autosomal loci, as reflected by larger changes in allele frequencies and greater reductions in numbers of alleles and average heterozygosity. The severity of the genetic diversity loss supports a scenario of a few D. pseudoobscura females being introduced to New Zealand from North America

    Biocatalytic and antimetastatic studies of the marine cembranoids sarcophine and 2-epi-16-deoxysarcophine

    Get PDF
    The soft coral Sarcophyton glaucum is a rich resource of several bioactive cembranoids. Sarcophytol A (1) and sarcophine (2) are cembranoid diterpenes reported from this soft coral and extensively investigated for their cancer chemopreventive properties. This study aimed at investigating the antimetastatic potential of the major cembranoids, sarcophine (2) and 2-epi-16-deoxysarcophine (3), from the Red Sea soft coral S. glaucum. Biocatalytic transformation of 3 using Rhizopus stolonifer ATCC 6227a and Absidia spinosa ATCC 6648 afforded four new metabolites, 5-7 and 9, along with the known 9α-hydroxysarcophine (8). Sarcophine, 2-epi-16-deoxysarcophine, and metabolites 5-9 revealed significant antimetastatic activity against the highly metastatic mouse melanoma cell line (B16B15b). Cembranoids demonstrate a great potential for further development as antimetastatic agents. © 2006 American Chemical Society and American Society of Pharmacognosy

    Metabolic reprogramming by 3-Iodothyronamine (T1AM): a new perspective to reverse obesity through co-regulation of sirtuin 4 and 6 expression

    Get PDF
    Obesity is a complex disease associated with environmental and genetic factors. 3-Iodothyronamine (T1AM) has revealed great potential as an effective weight loss drug. We used metabolomics and associated transcriptional gene and protein expression analysis to investigate the tissue specific metabolic reprogramming effects of subchronic T1AM treatment at two pharmacological daily doses (10 and 25 mg/kg) on targeted metabolic pathways. Multi-analytical results indicated that T1AM at 25 mg/kg can act as a novel master regulator of both glucose and lipid metabolism in mice through sirtuin-mediated pathways. In liver, we observed an increased gene and protein expression of Sirt6 (a master gene regulator of glucose) and Gck (glucose kinase) and a decreased expression of Sirt4 (a negative regulator of fatty acids oxidation (FAO)), whereas in white adipose tissue only Sirt6 was increased. Metabolomics analysis supported physiological changes at both doses with most increases in FAO, glycolysis indicators and the mitochondrial substrate, at the highest dose of T1AM. Together our results suggest that T1AM acts through sirtuin-mediated pathways to metabolically reprogram fatty acid and glucose metabolism possibly through small molecules signaling. Our novel mechanistic findings indicate that T1AM has a great potential as a drug for the treatment of obesity and possibly diabetes

    Adapting detection sensitivity based on evidence of irregular sinus arrhythmia to improve atrial fibrillation detection in insertable cardiac monitors

    Get PDF
    Intermittent change in p-wave discernibility during periods of ectopy and sinus arrhythmia is a cause of inappropriate atrial fibrillation (AF) detection in insertable cardiac monitors (ICM). To address this, we developed and validated an enhanced AF detection algorithm.Atrial fibrillation detection in Reveal LINQ ICM uses patterns of incoherence in RR intervals and absence of P-wave evidence over a 2-min period. The enhanced algorithm includes P-wave evidence during RR irregularity as evidence of sinus arrhythmia or ectopy to adaptively optimize sensitivity for AF detection. The algorithm was developed and validated using Holter data from the XPECT and LINQ Usability studies which collected surface electrocardiogram (ECG) and continuous ICM ECG over a 24-48 h period. The algorithm detections were compared with Holter annotations, performed by multiple reviewers, to compute episode and duration detection performance. The validation dataset comprised of 3187 h of valid Holter and LINQ recordings from 138 patients, with true AF in 37 patients yielding 108 true AF episodes ≥2-min and 449 h of AF. The enhanced algorithm reduced inappropriately detected episodes by 49% and duration by 66% with <1% loss in true episodes or duration. The algorithm correctly identified 98.9% of total AF duration and 99.8% of total sinus or non-AF rhythm duration. The algorithm detected 97.2% (99.7% per-patient average) of all AF episodes ≥2-min, and 84.9% (95.3% per-patient average) of detected episodes involved AF.An enhancement that adapts sensitivity for AF detection reduced inappropriately detected episodes and duration with minimal reduction in sensitivity.Helmut Pürerfellner, Prashanthan Sanders, Shantanu Sarkar, Erin Reisfeld, Jerry Reiland, Jodi Koehler, Evgeny Pokushalov, Ľuboš Urban, Lukas R C Dekke

    A VLBI receiving system for the South Pole Telescope

    Full text link
    The Event Horizon Telescope (EHT) is a very-long-baseline interferometry (VLBI) experiment that aims to observe supermassive black holes with an angular resolution that is comparable to the event horizon scale. The South Pole occupies an important position in the array, greatly increasing its north-south extent and therefore its resolution. The South Pole Telescope (SPT) is a 10-meter diameter, millimeter-wavelength telescope equipped for bolometric observations of the cosmic microwave background. To enable VLBI observations with the SPT we have constructed a coherent signal chain suitable for the South Pole environment. The dual-frequency receiver incorporates state-of-the-art SIS mixers and is installed in the SPT receiver cabin. The VLBI signal chain also includes a recording system and reference frequency generator tied to a hydrogen maser. Here we describe the SPT VLBI system design in detail and present both the lab measurements and on-sky results.Comment: 14 pages, 11 figures, to appear in the Proceedings of the SPIE (SPIE Astronomical Telescopes + Instrumentation 2018; Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX

    Differential Phosphorylation of Ribosomal Proteins in Arabidopsis thaliana Plants during Day and Night

    Get PDF
    Protein synthesis in plants is characterized by increase in the translation rates for numerous proteins and central metabolic enzymes during the day phase of the photoperiod. The detailed molecular mechanisms of this diurnal regulation are unknown, while eukaryotic protein translation is mainly controlled at the level of ribosomal initiation complexes, which also involves multiple events of protein phosphorylation. We characterized the extent of protein phosphorylation in cytosolic ribosomes isolated from leaves of the model plant Arabidopsis thaliana harvested during day or night. Proteomic analyses of preparations corresponding to both phases of the photoperiod detected phosphorylation at eight serine residues in the C-termini of six ribosomal proteins: S2-3, S6-1, S6-2, P0-2, P1 and L29-1. This included previously unknown phosphorylation of the 40S ribosomal protein S6 at Ser-231. Relative quantification of the phosphorylated peptides using stable isotope labeling and mass spectrometry revealed a 2.2 times increase in the day/night phosphorylation ratio at this site. Phosphorylation of the S6-1 and S6-2 variants of the same protein at Ser-240 increased by the factors of 4.2 and 1.8, respectively. The 1.6 increase in phosphorylation during the day was also found at Ser-58 of the 60S ribosomal protein L29-1. It is suggested that differential phosphorylation of the ribosomal proteins S6-1, S6-2 and L29-1 may contribute to modulation of the diurnal protein synthesis in plants

    High Light Induced Disassembly of Photosystem II Supercomplexes in Arabidopsis Requires STN7-Dependent Phosphorylation of CP29

    Get PDF
    Photosynthetic oxidation of water and production of oxygen by photosystem II (PSII) in thylakoid membranes of plant chloroplasts is highly affected by changes in light intensities. To minimize damage imposed by excessive sunlight and sustain the photosynthetic activity PSII, organized in supercomplexes with its light harvesting antenna, undergoes conformational changes, disassembly and repair via not clearly understood mechanisms. We characterized the phosphoproteome of the thylakoid membranes from Arabidopsis thaliana wild type, stn7, stn8 and stn7stn8 mutant plants exposed to high light. The high light treatment of the wild type and stn8 caused specific increase in phosphorylation of Lhcb4.1 and Lhcb4.2 isoforms of the PSII linker protein CP29 at five different threonine residues. Phosphorylation of CP29 at four of these residues was not found in stn7 and stn7stn8 plants lacking the STN7 protein kinase. Blue native gel electrophoresis followed by immunological and mass spectrometric analyses of the membrane protein complexes revealed that the high light treatment of the wild type caused redistribution of CP29 from PSII supercomplexes to PSII dimers and monomers. A similar high-light-induced disassembly of the PSII supercomplexes occurred in stn8, but not in stn7 and stn7stn8. Transfer of the high-light-treated wild type plants to normal light relocated CP29 back to PSII supercomplexes. We postulate that disassembly of PSII supercomplexes in plants exposed to high light involves STN7-kinase-dependent phosphorylation of the linker protein CP29. Disruption of this adaptive mechanism can explain dramatically retarded growth of the stn7 and stn7stn8 mutants under fluctuating normal/high light conditions, as previously reported
    • …
    corecore