703 research outputs found

    On the low-temperature lattice thermal transport in nanowires

    Full text link
    We propose a theory of low temperature thermal transport in nano-wires in the regime where a competition between phonon and flexural modes governs the relaxation processes. Starting with the standard kinetic equations for two different types of quasiparticles we derive a general expression for the coefficient of thermal conductivity. The underlying physics of thermal conductance is completely determined by the corresponding relaxation times, which can be calculated directly for any dispersion of quasiparticles depending on the size of a system. We show that if the considered relaxation mechanism is dominant, then at small wire diameters the temperature dependence of thermal conductivity experiences a crossover from T1/2T^{1/2} to T3T^3-dependence. Quantitative analysis shows reasonable agreement with resent experimental results.Comment: 12 pages, 3 eps figure

    Survey for Emission-Line Galaxies: Universidad Complutense de Madrid List 3

    Get PDF
    A new low-dispersion objective-prism search for low-redshift (z<0.045) emission-line galaxies (ELG) has been carried out by the Universidad Complutense de Madrid with the Schmidt Telescope at the Calar-Alto Observatory. This is a continuation of the UCM Survey, which was performed by visual selection of candidates in photographic plates via the presence of the Halpha+[NII]6584 blend in emission. In this new list we have applied an automatic procedure, fully developed by us, for selecting and analyzing the ELG candidates on the digitized images obtained with the MAMA machine. The analyzed region of the sky covers 189 square degrees in nine fields near R.A.=14h & 17h, Dec=25 deg. The final sample contains 113 candidates. Special effort has been made to obtain a large amount of information directly from our uncalibrated plates by using several external calibrations. The parameters obtained for the ELG candidates allow for the study of the statistical properties for the sample.Comment: 13 pages, 18 PostScript figures, 6 JPEG figures, Table 2 corrected. Accepted for publication in Astrophysical Journal Supplements, also available at http://www.ucm.es/info/Astrof/opera/LIST3_ApJS99

    Observation of the Smallest Metal Nanotube with Square-cross-section

    Full text link
    Understanding the mechanical properties of nanoscale systems requires a range of measurement techniques and theoretical approaches to gather the relevant physical and chemical information. The arrangements of atoms in nanostructures and macroscopic matter can be different, principally due to the role of surface energy, but the interplay between atomic and electronic structure in association with applied mechanical stress can also lead to surprising differences. For example, metastable structures such as suspended chains of atoms and helical wires have been produced by the stretching of metal junctions. Here we report the spontaneous formation of the smallest possible metal nanotube with a square cross-section during the elongation of silver nanocontacts. Ab initio calculations and molecular simulations indicate that the hollow wire forms because this configuration allows the surface energy to be minimized, and also generates a soft structure capable of absorbing a huge tensile deformation

    Quantum transport using the Ford-Kac-Mazur formalism

    Get PDF
    The Ford-Kac-Mazur formalism is used to study quantum transport in (1) electronic and (2) harmonic oscillator systems connected to general reservoirs. It is shown that for non-interacting systems the method is easy to implement and is used to obtain many exact results on electrical and thermal transport in one-dimensional disordered wires. Some of these have earlier been obtained using nonequilibrium Green function methods. We examine the role that reservoirs and contacts can have on determining the transport properties of a wire and find several interesting effects.Comment: 10 pages, 4 figure

    Prospects for microwave plasma synthesized N-graphene in secondary electron emission mitigation applications

    Get PDF
    PTDC/NAN-MAT/30565/2017 D01-284/2019 (INFRAMAT) IBB BASE 2020-2023 UID/FIS/00068/2019.The ability to change the secondary electron emission properties of nitrogen-doped graphene (N-graphene) has been demonstrated. To this end, a novel microwave plasma-enabled scalable route for continuous and controllable fabrication of free-standing N-graphene sheets was developed. High-quality N-graphene with prescribed structural qualities was produced at a rate of 0.5 mg/min by tailoring the high energy density plasma environment. Up to 8% of nitrogen doping levels were achieved while keeping the oxygen content at residual amounts ( 1%). The synthesis is accomplished via a single step, at atmospheric conditions, using ethanol/methane and ammonia/methylamine as carbon and nitrogen precursors. The type and level of doping is affected by the position where the N-precursor is injected in the plasma environment and by the type of precursors used. Importantly, N atoms incorporated predominantly in pyridinic/pyrrolic functional groups alter the performance of the collective electronic oscillations, i.e. plasmons, of graphene. For the first time it has been demonstrated that the synergistic effect between the electronic structure changes and the reduction of graphene $-plasmons caused by N doping, along with the peculiar “crumpled” morphology, leads to sub-unitary (textless 1) secondary electron yields. N-graphene can be considered as a prospective low secondary electron emission and plasmonic material.publishersversionpublishe

    Heisenberg-type structures of one-dimensional quantum Hamiltonians

    Full text link
    We construct a Heisenberg-like algebra for the one dimensional infinite square-well potential in quantum mechanics. The ladder operators are realized in terms of physical operators of the system as in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed non commutative differential calculus. This \textquotedblleft square-well algebra\textquotedblright is an example of an algebra in a large class of generalized Heisenberg algebras recently constructed. This class of algebras also contains qq-oscillators as a particular case. We also discuss the physical content of this large class of algebras.Comment: 11 pages. The title and abstract were modified and minor corrections were made in the paper's core. Final version to appear in Phys. Rev.

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    A serious games platform for cognitive rehabilitation with preliminary evaluation

    Get PDF
    In recent years Serious Games have evolved substantially, solving problems in diverse areas. In particular, in Cognitive Rehabilitation, Serious Games assume a relevant role. Traditional cognitive therapies are often considered repetitive and discouraging for patients and Serious Games can be used to create more dynamic rehabilitation processes, holding patients' attention throughout the process and motivating them during their road to recovery. This paper reviews Serious Games and user interfaces in rehabilitation area and details a Serious Games platform for Cognitive Rehabilitation that includes a set of features such as: natural and multimodal user interfaces and social features (competition, collaboration, and handicapping) which can contribute to augment the motivation of patients during the rehabilitation process. The web platform was tested with healthy subjects. Results of this preliminary evaluation show the motivation and the interest of the participants by playing the games.- This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia in the scope of the projects: PEst-UID/CEC/00319/2015 and PEst-UID/CEC/00027/2015. The authors would like to thank also all the volunteers that participated in the study

    Clear-PEM: A PET imaging system dedicated to breast cancer diagnostics

    Get PDF
    The Clear-PEM scanner for positron emission mammography under development is described. The detector is based on pixelized LYSO crystals optically coupled to avalanche photodiodes and readout by a fast low-noise electronic system. A dedicated digital trigger (TGR) and data acquisition (DAQ) system is used for on-line selection of coincidence events with high efficiency, large bandwidth and small dead-time. A specialized gantry allows to perform exams of the breast and of the axilla. In this paper we present results of the measurement of detector modules that integrate the system under construction as well as the imaging performance estimated from Monte Carlo simulated data.http://www.sciencedirect.com/science/article/B6TJM-4M942B5-D/1/e8aea93baa1aeae3538ea200a5a5466
    corecore