54 research outputs found

    Glioblastoma multiforme: a multidisciplinary approach to overcome chemoresistance and find new therapeutic strategies

    Get PDF
    Objectives: Glioblastoma multiforme is the most frequent malignant brain tumor. Patients die within 15 months after diagnosis. The failure of current therapies is ascribed to a subpopulation of cells with stem-like properties, called glioma stem cells (GSCs). The aim of this study is to develop new effective therapies. Moreover, we want to better characterize the orthotopic xenograft model established by GSCs injection into NOD/SCID mice. Materials and methods: We tested Temolomide and Valproic acid treatments, alone and in combination, on seven GSC lines by MTT assay and we sequenced p53. Moreover, we characterized our xenograft model investigating the expression of stemness and differentiation markers by immunohistochemistry on FFPE tissues and by immunofluorescence on the correspondent cell line. Finally, we performed aCGH on the DNA extracted from the cell line and from FFPE tissues. Results: GSCs were resistant to Temozolomide and slightly sensitive to Valproic acid. The two drugs exerted a synergistic effect when combined performing a pre-conditioning with Valproic acid. Furthermore, several cell lines carry p53 mutations. IF and IHC showed a perfect correspondence for stemness markers expression, but discordant data for the others. aCGH analysis evidenced numerous alterations specific for the ex vivo sample, suggesting the presence of an in vivo clonal selection. Discussion: This work shows the importance of murine microenvironment in GSCs phenotype in vivo and suggests the possibility to use our combined treatment for therapeutic purposes. Conclusions: Orthotopic models from GSCs and in vitro grown cell lines represent good models for the development of GSC-targeted therapies

    Cytogenetics of Premature Ovarian Failure: An Investigation on 269 Affected Women

    Get PDF
    The importance of X chromosome in the aetiology of premature ovarian failure (POF) is well-known but in many cases POF still remains idiopathic. Chromosome aneuploidy increase is a physiological phenomenon related to aging, but the role of low-level sex chromosome mosaicism in ovarian function is still undiscovered. Standard cytogenetic analysis was carried out in a total of 269 patients affected by POF: 27 chromosomal abnormalities were identified, including X chromosome and autosomal structural and numerical abnormalities. In 47 patients with 46,XX karyotype we performed interphase FISH using X alpha-satellite probe in order to identify X chromosome mosaicism rate. Aneuploidy rate in the patient group was significantly higher than the general population group. These findings underline the importance of X chromosome in the aetiology of POF and highlight the potential role of low-level sex chromosome mosaicism in ovarian aging that may lead to a premature onset of menopause

    Genomic and epigenomic profile of uterine smooth muscle tumors of uncertain malignant potential (Stumps) revealed similarities and differences with leiomyomas and leiomyosarcomas

    Get PDF
    Uterine smooth muscle tumors of uncertain malignant potential (STUMPs) represent a heterogeneous group of tumors that cannot be histologically diagnosed as unequivocally benign or malignant. For this reason, many authors are working to obtain a better definition of diagnostic and prognostic criteria. In this work, we analyzed the genomic and epigenomic profile of uterine smooth muscle tumors (USMTs) in order to find similarities and differences between STUMPs, leiomyosarcomas (LMSs) and leiomyomas (LMs), and possibly identify prognostic factors in this group of tumors. Array-CGH data on 23 USMTs demonstrated the presence of a more similar genomic profile between STUMPs and LMSs. Some genes, such as PRKDC and PUM2, with a potential prognostic value, were never previously associated with STUMP. The methylation data appears to be very promising, especially with regards to the divergent profile found in the sample that relapsed, characterized by an overall CGI hypomethylation. Finally, the Gene Ontology analysis highlighted some cancer genes that could play a pivotal role in the unexpected aggressive behavior that can be found in some of these tumors. These genes could prove to be prognostic markers in the future

    Cytogenetics of Premature Ovarian Failure: An Investigation on 269 Affected Women

    Get PDF
    The importance of X chromosome in the aetiology of premature ovarian failure (POF) is well-known but in many cases POF still remains idiopathic. Chromosome aneuploidy increase is a physiological phenomenon related to aging, but the role of low-level sex chromosome mosaicism in ovarian function is still undiscovered. Standard cytogenetic analysis was carried out in a total of 269 patients affected by POF: 27 chromosomal abnormalities were identified, including X chromosome and autosomal structural and numerical abnormalities. In 47 patients with 46,XX karyotype we performed interphase FISH using X alpha-satellite probe in order to identify X chromosome mosaicism rate. Aneuploidy rate in the patient group was significantly higher than the general population group. These findings underline the importance of X chromosome in the aetiology of POF and highlight the potential role of low-level sex chromosome mosaicism in ovarian aging that may lead to a premature onset of menopause

    Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells

    Get PDF
    Bone-marrow-derived mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into multiple cell types. Accumulating preclinical and clinical evidence indicates that MSCs are good candidates to use as cell therapy in many degenerative diseases. For MSC clinical applications, an adequate number of cells are necessary so an extensive expansion is required. However, spontaneous immortalization and malignant transformation of MSCs after culture expansion have been reported in human and mouse, while very few data are present for rat MSCs (rMSCs). In this study, we monitored the chromosomal status of rMSCs at several passages in vitro, also testing the influence of four different cell culture conditions. We first used the conventional traditional cytogenetic techniques, in order to have the opportunity to observe even minor structural abnormalities and to identify low-degree mosaic conditions. Then, a more detailed genomic analysis was conducted by array comparative genomic hybridization. We demonstrated that, irrespective of culture conditions, rMSCs manifested a markedly aneuploid karyotype and a progressive chromosomal instability in all the passages we analyzed and that they are anything but stable during in vitro culture. Despite the fact that the risk of neoplastic transformation associated with this genomic instability needs to be further addressed and considering the apparent genomic stability reported for in vitro cultured human MSCs (hMSCs), our findings underline the fact that rMSCs may not in fact be a good model for effectively exploring the full clinical therapeutic potential of hMSCs

    Chromosomal Aberrations in Bladder Cancer: Fresh versus Formalin Fixed Paraffin Embedded Tissue and Targeted FISH versus Wide Microarray-Based CGH Analysis

    Get PDF
    Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of chromosome 7, albeit other nonrandom copy number alterations (CNAs) were identified. However, confirmation studies are needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay) widely used for the detection of Transitional Cell Carcinoma (TCC) of the bladder, in two different types of material derived from the same tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN) and on Formalin Fixed Paraffin Embedded (FFPE) tissues from 22 TCCs and we didn't find substantial differences. A second goal was to assess the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods, that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single cells, even if it focuses on few genomic regions

    Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein

    Get PDF
    The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.(undefined)info:eu-repo/semantics/publishedVersio
    corecore