349 research outputs found

    Introduction: The academic book of the future

    Get PDF
    In early 2014, the Arts and Humanities Research Council (AHRC) partnered with The British Library to launch a call for teams to run The Academic Book of the Future Project. The Project brief was ‘to explore the future of the academic book in the context of Open Access publishing and the digital revolution’.1 Our team2 successfully pitched to facilitate a two-pronged approach. We are using the expert services of the Research Information Network and Dr Michael Jubb to undertake a wide-ranging series of focus groups, gathering responses to our research questions,3 whilst the core Project team are consulting with the communities of practice connected to academic books to evoke responses via more detailed pieces of commissioned research, symposia, workshops and conferences. The mid-point of the Project, Academic Book Week (9–16 November, 2015),4 will highlight a week-long showcase of this activity, plus other special events from our partners, including the launch of the volume you are now reading

    The academic book of the future

    Get PDF
    Part of the AHRC/British Library Academic Book of the Future Project, this book interrogates current and emerging contexts of academic books from the perspectives of thirteen expert voices from the connected communities of publishing, academia, libraries, and bookselling

    Developing an In Vitro Model to Screen Drugs for Nerve Regeneration

    Get PDF
    Peripheral nerve injuries (PNI) have a high prevalence and can be debilitating, resulting in life-long loss or disturbance in end-organ function, which compromises quality of life for patients. Current therapies use microsurgical approaches but there is the potential for enhancing recovery through other therapeutic modalities such as; cell-based conduits, gene therapy and small molecules. A number of molecular targets and drugs which have the potential to improve nerve regeneration have been identified, however, there are challenges associated with moving therapies toward clinical translation. Due to the lack of detailed knowledge about the pro-regenerative effect of potential drug treatments, there is a need for effective in vitro models to screen compounds to inform future pre-clinical and clinical studies. The interaction between regenerating neurites and supporting Schwann cells is a key feature of the nerve environment, therefore, in vitro models that mimic this cellular association are useful tools. In this study, we have investigated various cell culture models, including simple monolayer systems and more complex 3D-engineered co-cultures, as models for use in PNI drug development. Anat Rec, 2018. © 2018 The Authors. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology published by Wiley Periodicals, Inc. on behalf of Wiley-Liss, Inc

    Ciliated Epithelial Cell Differentiation at Air-Liquid Interface Using Commercially Available Culture Media

    Get PDF
    The human nasal epithelium contains basal stem/progenitor cells that produce differentiated multiciliated and mucosecretory progeny. Basal epithelial cells can be expanded in cell culture and instructed to differentiate at an air-liquid interface using transwell membranes and differentiation media. For basal cell expansion, we have used 3T3-J2 co-culture in epithelial culture medium containing EGF, insulin, and a RHO-associated protein kinase (ROCK) inhibitor, Y-27632 (3T3 + Y). Here we describe our protocols for ciliated differentiation of these cultures at air-liquid interface and compare four commercially available differentiation media, across nine donor cell cultures (six healthy, two patients with chronic obstructive pulmonary disease (COPD), and one with primary ciliary dyskinesia (PCD)). Bright-field and immunofluorescence imaging suggested broad similarity between differentiation protocols. Subtle differences were seen in transepithelial electrical resistance (TEER), ciliary beat frequency, mucus production, and the extent to which basal cells are retained in differentiated cultures. Overall, the specific differentiation medium used in our air-liquid interface culture protocol was not a major determinant of ciliation, and our data suggest that the differentiation potential of basal cells at the outset is a more critical factor in air-liquid interface culture outcome. Detailed information on the constituents of the differentiation media was only available from one of the four manufacturers, a factor that may have profound implications in the interpretation of some research studies

    Parafoveal preview effects from word N+1 and word N+2 during reading: A critical review and Bayesian meta-analysis

    Get PDF
    The use of gaze-contingent display techniques to study reading has shown that readers attend not only to the currently fixated word, but also to the word to the right of the current fixation. However, a critical look at the literature shows that there are a number of questions that cannot be readily answered from the available literature reviews on the topic. First, there is no consensus on whether readers also attend to the second word to the right of fixation. Second, it is not clear whether parafoveal processing is more efficient in languages such as Chinese. Third, it is not well understood whether the measured effects are confounded by the properties of the parafoveal mask. The present study addressed these issues by performing a Bayesian meta-analysis of 93 experiments that used the boundary paradigm (Rayner, 1975). There were three main findings: 1) the advantage of previewing the second word to the right is modest in size and likely not centred on zero; 2) Chinese readers seem to make a more efficient use of parafoveal processing, but this is mostly evident in gaze duration; 3) there are interference effects associated with using different parafoveal masks that roughly increase when the mask is less word-like

    The Promise and Challenge of Therapeutic MicroRNA Silencing in Diabetes and Metabolic Diseases

    Get PDF
    MicroRNAs (miRNAs) are small, non-coding, RNA molecules that regulate gene expression. They have a long evolutionary history and are found in plants, viruses, and animals. Although initially discovered in 1993 in Caenorhabditis elegans, they were not appreciated as widespread and abundant gene regulators until the early 2000s. Studies in the last decade have found that miRNAs confer phenotypic robustness in the face of environmental perturbation, may serve as diagnostic and prognostic indicators of disease, underlie the pathobiology of a wide array of complex disorders, and represent compelling therapeutic targets. Pre-clinical studies in animal models have demonstrated that pharmacologic manipulation of miRNAs, mostly in the liver, can modulate metabolic phenotypes and even reverse the course of insulin resistance and diabetes. There is cautious optimism in the field about miRNA-based therapies for diabetes, several of which are already in various stages of clinical trials. This review will highlight both the promise and the most pressing challenges of therapeutic miRNA silencing in diabetes and related conditions

    The 1983 drought in the West Sahel: a case study

    Get PDF
    Some drought years over sub-Saharan west Africa (1972, 1977, 1984) have been previously related to a cross-equatorial Atlantic gradient pattern with anomalously warm sea surface temperatures (SSTs) south of 10°N and anomalously cold SSTs north of 10°N. This SST dipole-like pattern was not characteristic of 1983, the third driest summer of the twentieth century in the Sahel. This study presents evidence that the dry conditions that persisted over the west Sahel in 1983 were mainly forced by high Indian Ocean SSTs that were probably remanent from the strong 1982/1983 El Niño event. The synchronous Pacific impact of the 1982/1983 El Niño event on west African rainfall was however, quite weak. Prior studies have mainly suggested that the Indian Ocean SSTs impact the decadal-scale rainfall variability over the west Sahel. This study demonstrates that the Indian Ocean also significantly affects inter-annual rainfall variability over the west Sahel and that it was the main forcing for the drought over the west Sahel in 1983

    Norepinephrine Controls Both Torpor Initiation and Emergence via Distinct Mechanisms in the Mouse

    Get PDF
    Some mammals, including laboratory mice, enter torpor in response to food deprivation, and leptin can attenuate these bouts of torpor. We previously showed that dopamine β-hydroxylase knockout (Dbh −/−) mice, which lack norepinephrine (NE), do not reduce circulating leptin upon fasting nor do they enter torpor. To test whether the onset of torpor in mice during a fast requires a NE-mediated reduction in circulating leptin, double mutant mice deficient in both leptin (ob/ob) and DBH (DBL MUT) were generated. Upon fasting, control and ob/ob mice entered torpor as assessed by telemetric core Tb acquisition. While fasting failed to induce torpor in Dbh −/− mice, leptin deficiency bypassed the requirement for NE, as DBL MUT mice readily entered torpor upon fasting. These data indicate that sympathetic activation of white fat and suppression of leptin is required for the onset of torpor in the mouse. Emergence from torpor was severely retarded in DBL MUT mice, revealing a novel, leptin-independent role for NE in torpor recovery. This phenotype was mimicked by administration of a β3 adrenergic receptor antagonist to control mice during a torpor bout. Hence, NE signaling via β3 adrenergic receptors presumably in brown fat is the first neurotransmitter-receptor system identified that is required for normal recovery from torpor
    • …
    corecore