241 research outputs found

    Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis

    Get PDF
    Common fragile sites (cfs) are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis. We discuss a genome-wide approach based on graph theory and Gene Ontology vocabulary for the functional characterization of common fragile sites and for the identification of genes that contribute to tumour cell biology. CFS were assembled in a network based on a simple measure of correlation among common fragile site patterns of expression. By applying robust measurements to capture in quantitative terms the non triviality of the network, we identified several topological features clearly indicating departure from the Erdos-Renyi random graph model. The most important outcome was the presence of an unexpected large connected component far below the percolation threshold. Most of the best characterized common fragile sites belonged to this connected component. By filtering this connected component with Gene Ontology, statistically significant shared functional features were detected. Common fragile sites were found to be enriched for genes associated to the immune response and to mechanisms involved in tumour progression such as extracellular space remodeling and angiogenesis. Our results support the hypothesis that fragile sites serve a function; we propose that fragility is linked to a coordinated regulation of fragile genes expression.Comment: 18 pages, accepted for publication in BMC Bioinformatic

    Light hadron, Charmonium(-like) and Bottomonium(-like) states

    Full text link
    Hadron physics represents the study of strongly interacting matter in all its manifestations and the understanding of its properties and interactions. The interest on this field has been revitalized by the discovery of new light hadrons, charmonium- and bottomonium-like states. I review the most recent experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures; add more references; some correctio

    Early onset torsion dystonia (Oppenheim's dystonia)

    Get PDF
    Early onset torsion dystonia (EOTD) is a rare movement disorder characterized by involuntary, repetitive, sustained muscle contractions or postures involving one or more sites of the body. A US study estimated the prevalence at approximately 1 in 30,000. The estimated prevalence in the general population of Europe seems to be lower, ranging from 1 in 330,000 to 1 in 200,000, although precise numbers are currently not available. The estimated prevalence in the Ashkenazi Jewish population is approximately five to ten times higher, due to a founder mutation. Symptoms of EOTD typically develop first in an arm or leg in middle to late childhood and progress in approximately 30% of patients to other body regions (generalized dystonia) within about five years. Distribution and severity of symptoms vary widely between affected individuals. The majority of cases from various ethnic groups are caused by an autosomal dominantly inherited deletion of 3 bp (GAG) in the DYT1 gene on chromosome 9q34. This gene encodes a protein named torsinA, which is presumed to act as a chaperone protein associated with the endoplasmic reticulum and the nuclear envelope. It may interact with the dopamine transporter and participate in intracellular trafficking, although its precise function within the cell remains to be determined. Molecular genetic diagnostic and genetic counseling is recommended for individuals with age of onset below 26 years, and may also be considered in those with onset after 26 years having a relative with typical early onset dystonia. Treatment options include botulinum toxin injections for focal symptoms, pharmacological therapy such as anticholinergics (most commonly trihexiphenydil) for generalized dystonia and surgical approaches such as deep brain stimulation of the internal globus pallidus or intrathecal baclofen application in severe cases. All patients have normal cognitive function, and despite a high rate of generalization of dystonia, 75% of those patients are able to maintain ambulation and independence, and therefore a comparatively good quality of life, with modern treatment modalities

    Monitoring Toxicity Associated with Parenteral Sodium Stibogluconate in the Day-Case Management of Returned Travellers with New World Cutaneous Leishmaniasi

    Get PDF
    Sodium stibogluconate (SbV), a pentavalent antimonial, administered parenterally, is the recommended treatment for South American cutaneous leishmaniasis, caused by Leishmania Viannia, which is a neglected disease that affects many people resident in Central and South America, as well as travellers to the areas. Antimonials have been used for the treatment of leishmaniasis since the 1930s. We report the toxicity experienced by a series of NWCL patients receiving SbV in a resource-rich setting. This study also evaluates administration of the drug to patients without admitting them to hospital. The administration of parenteral SbV was associated with myelosuppression, derangement of markers of liver function and prolongation of the QT interval on electrocardiography, although these effects were not found to be associated with adverse clinical events, and the majority of doses of SbV were administered without cause for hospital admission. Our data shows that parenteral SbV treatment may be provided with reduced monitoring for toxicity than is currently done, and on an outpatient-basis, without endangering safety. Such practice, with reduced demands on local finances and the healthcare workforce, would be desirable in more resource-limited settings

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris - a comparative analysis

    Get PDF
    Background: Saccharomyces cerevisiae and Pichia pastoris are two of the most relevant microbial eukaryotic platforms for the production of recombinant proteins. Their known genome sequences enabled several transcriptomic profiling studies under many different environmental conditions, thus mimicking not only perturbations and adaptations which occur in their natural surroundings, but also in industrial processes. Notably, the majority of such transcriptome analyses were performed using non-engineered strains. In this comparative study, the gene expression profiles of S. cerevisiae and P. pastoris, a Crabtree positive and Crabtree negative yeast, respectively, were analyzed for three different oxygenation conditions (normoxic, oxygen-limited and hypoxic) under recombinant protein producing conditions in chemostat cultivations. Results: The major differences in the transcriptomes of S. cerevisiae and P. pastoris were observed between hypoxic and normoxic conditions, where the availability of oxygen strongly affected ergosterol biosynthesis, central carbon metabolism and stress responses, particularly the unfolded protein response. Steady state conditions under low oxygen set-points seemed to perturb the transcriptome of S. cerevisiae to a much lesser extent than the one of P. pastoris, reflecting the major tolerance of the baker's yeast towards oxygen limitation, and a higher fermentative capacity. Further important differences were related to Fab production, which was not significantly affected by oxygen availability in S. cerevisiae, while a clear productivity increase had been previously reported for hypoxically grown P. pastoris. Conclusions: The effect of three different levels of oxygen availability on the physiology of P. pastoris and S. cerevisiae revealed a very distinct remodelling of the transcriptional program, leading to novel insights into the different adaptive responses of Crabtree negative and positive yeasts to oxygen availability. Moreover, the application of such comparative genomic studies to recombinant hosts grown in different environments might lead to the identification of key factors for efficient protein production

    Long-term effects of cranial irradiation and intrathecal chemotherapy in treatment of childhood leukemia: a MEG study of power spectrum and correlated cognitive dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prophylaxis to prevent relapses in the central nervous system after childhood acute lymphoblastic leukemia (ALL) used to consist of both intrathecal chemotherapy (CT) and cranial irradiation (CRT). CRT was mostly abolished in the eighties because of its neurotoxicity, and replaced with more intensive intrathecal CT. In this study, a group of survivors treated with CRT before 1983 and another group treated without CRT thereafter are investigated 20–25 years later, giving a much stronger perspective on long-term quality of life than previous studies. The outcomes will help to better understand these groups’ current needs and will aid in anticipating late effects of prophylactic CRT that is currently applied for other diseases. This study evaluates oscillatory neuronal activity in these long-term survivors. Power spectrum deviations are hypothesized to correlate with cognitive dysfunction.</p> <p>Methods</p> <p>Resting state eyes-closed magnetoencephalography (MEG) recordings were obtained from 14 ALL survivors treated with CT + CRT, 18 treated with CT alone and 35 controls. Relative spectral power was calculated in the δ, θ, α1, α2, β and γ frequency bands. The Amsterdam Neuropsychological Tasks (ANT) program was used to assess cognition in the executive functions domain. MEG data and ANT scores were correlated.</p> <p>Results</p> <p>In the CT + CRT group, relative θ power was slightly increased (p = 0.069) and α2 power was significantly decreased (p = 0.006). The CT + CRT group performed worse on various cognitive tests. A deficiency in visuomotor accuracy, especially of the right hand, could be clearly associated with the deviating regional θ and α2 powers (0.471 < r < 0.697). A significant association between decreased regional α2 power and less attentional fluctuations was found for CT + CRT patients as well as controls (0.078 < r < 0.666). Patients treated with CT alone displayed a power spectrum similar to controls, except for a significantly increased level of left frontal α2 power (p = 0.030).</p> <p>Conclusions</p> <p>The tendency towards global slowing of brain oscillatory activity, together with the fact that dementia has been reported as a late effect of CRT and the neuropsychological deficiencies currently present, suggest that the irradiated brain might be aging faster and could be at risk for early‐onset dementia. The CT group showed no signs of early aging.</p
    corecore