53 research outputs found
Ontogeny influences sensitivity to climate change stressors in an endangered fish.
Coastal ecosystems are among the most human-impacted habitats globally, and their management is often critically linked to recovery of declining native species. In the San Francisco Estuary, the Delta Smelt (Hypomesus transpacificus) is an endemic, endangered fish strongly tied to Californian conservation planning. The complex life history of Delta Smelt combined with dynamic seasonal and spatial abiotic conditions result in dissimilar environments experienced among ontogenetic stages, which may yield stage-specific susceptibility to abiotic stressors. Climate change is forecasted to increase San Francisco Estuary water temperature and salinity; therefore, understanding the influences of ontogeny and phenotypic plasticity on tolerance to these critical environmental parameters is particularly important for Delta Smelt and other San Francisco Estuary fishes. We assessed thermal and salinity limits in several ontogenetic stages and acclimation states of Delta Smelt, and paired these data with environmental data to evaluate sensitivity to climate-change stressors. Thermal tolerance decreased among successive stages, with larval fish exhibiting the highest tolerance and post-spawning adults having the lowest. Delta Smelt had limited capacity to increase tolerance through thermal acclimation, and comparisons with field temperature data revealed that juvenile tolerance limits are the closest to current environmental conditions, which may make this stage especially susceptible to future climate warming. Maximal water temperatures observed in situ exceeded tolerance limits of juveniles and adults. Although these temperature events are currently rare, if they increase in frequency as predicted, it could result in habitat loss at these locations despite other favourable conditions for Delta Smelt. In contrast, Delta Smelt tolerated salinities spanning the range of expected environmental conditions for each ontogenetic stage, but salinity did impact survival in juvenile and adult stages in exposures over acute time scales. Our results underscore the importance of considering ontogeny and phenotypic plasticity in assessing the impacts of climate change, particularly for species adapted to spatially and temporally heterogeneous environments
Recommended from our members
Stressor interactions in freshwater habitats: Effects of cold water exposure and food limitation on early-life growth and upper thermal tolerance in white sturgeon, Acipenser transmontanus
Limited food availability and altered thermal regimes (e.g. cold water releases from dams) are two common stressors threatening the persistence of fishes inhabiting anthropogenically disturbed freshwater systems. Yet, the combined effects of these stressors remain poorly characterised. To remedy this, we examined the isolated and combined effects of low temperature exposure and food restriction on specific growth rate (SGR, % body mass/day) and upper thermal tolerance (critical thermal maxima, CTMax) in larval white sturgeon (Acipenser transmontanus [Acipenseridae], 32 days post-hatch, body mass: 0.25 ± 0.03 g, mean ± standard deviation). A 2 × 2 factorial design was implemented with fish exposed to one of two ecologically-relevant acclimation temperatures (cold exposure: 11°C or a control temperature: 18°C) and one of two food restriction treatments designed to emulate observed declines in food availability (100% or 40% optimal feed rate) for 6 weeks (N: 3 replicate tanks/treatment, 50 fish/tank). Specific growth rate was affected by both low temperature exposure and food restriction in isolation; low temperature exposure reduced SGR by 56.5% and food restriction reduced SGR by 30.6%. Simultaneous exposure to low temperature and food restriction resulted in a greater but less than additive reduction in SGR (80.6%), indicating that the stressors interacted antagonistically. Critical thermal maxima were c. 2°C higher in 18°C-acclimated fish (CTMax = 30.7 ± 0.4°C, mean ± standard error) compared to 11°C-acclimated fish (CTMax = 28.6 ± 0.2°C, mean ± standard error); however, CTMax was independent of food restriction in both 11°C- and 18°C-acclimated fish. These data highlight the unpredictability of stressor interactions and may guide holistic conservation strategies, which target co-occurring stressors in freshwater habitats
Recommended from our members
Stressor interactions in freshwater habitats: Effects of cold water exposure and food limitation on early-life growth and upper thermal tolerance in white sturgeon, Acipenser transmontanus
Limited food availability and altered thermal regimes (e.g. cold water releases from dams) are two common stressors threatening the persistence of fishes inhabiting anthropogenically disturbed freshwater systems. Yet, the combined effects of these stressors remain poorly characterised. To remedy this, we examined the isolated and combined effects of low temperature exposure and food restriction on specific growth rate (SGR, % body mass/day) and upper thermal tolerance (critical thermal maxima, CTMax) in larval white sturgeon (Acipenser transmontanus [Acipenseridae], 32 days post-hatch, body mass: 0.25 ± 0.03 g, mean ± standard deviation). A 2 × 2 factorial design was implemented with fish exposed to one of two ecologically-relevant acclimation temperatures (cold exposure: 11°C or a control temperature: 18°C) and one of two food restriction treatments designed to emulate observed declines in food availability (100% or 40% optimal feed rate) for 6 weeks (N: 3 replicate tanks/treatment, 50 fish/tank). Specific growth rate was affected by both low temperature exposure and food restriction in isolation; low temperature exposure reduced SGR by 56.5% and food restriction reduced SGR by 30.6%. Simultaneous exposure to low temperature and food restriction resulted in a greater but less than additive reduction in SGR (80.6%), indicating that the stressors interacted antagonistically. Critical thermal maxima were c. 2°C higher in 18°C-acclimated fish (CTMax = 30.7 ± 0.4°C, mean ± standard error) compared to 11°C-acclimated fish (CTMax = 28.6 ± 0.2°C, mean ± standard error); however, CTMax was independent of food restriction in both 11°C- and 18°C-acclimated fish. These data highlight the unpredictability of stressor interactions and may guide holistic conservation strategies, which target co-occurring stressors in freshwater habitats
Physiological stress biomarkers reveal stocking density effects in late larval Delta Smelt (Hypomesus transpacificus)
Suboptimal fish stocking densities in experimental systems may elicit stress responses that can affect experimental results. Fish species, age and size, water chemistry and flow, and physical characteristics of the experimental system (e.g., tank, cage) are among the parameters to be considered when determining stocking densities. However, systematic studies to define fish densities minimizing stress in experimental systems are rarely performed. This is particularly true when working with species of low aquaculture value or a non-model test species such as the Delta Smelt (. Hypomesus transpacificus). The aim of this study was to use physiological stress biomarkers to determine suitable fish densities for specific experimental vessels routinely used for this species. We maintained late larval Delta Smelt (60. days post-hatch; dph) over a period of 24. h, at five different densities: 7, 14, 28, 42, and 56 fish per 8. L circular fish tank. We assessed whole body cortisol and transcriptomic biomarkers that lead to cortisol production to quantify stress levels. Both marker types delivered similar results. Cortisol levels were lowest at densities of 28 and 42 fish per tank, whereas lowest fish densities (7 and 14 fish per tank) evoked the highest stress levels. Genes such as Mineralocorticoid Receptor 1 and Glucocorticoid Receptor 2, as well as 11-Beta-Hydroxysteroid-Dehydrogenase-2 depicted the lowest expression levels at stocking densities 28 and 42, and elevated expression levels for stocking densities 7 and 14. Our data support the observations that late larval Delta Smelt should be exposed, acclimated, and cultured in groups rather than as individuals or in low numbers. This study indicates the importance of adequately defining experimental conditions that minimize stress, specifically when stress is measured as an endpoint. In addition to classical cortisol measurements, responses of the transcriptome also appear suitable in assessing stress responses in fish, and in determining optimal holding conditions, particularly if short-term responses are the study focus.Statement of relevance. The study highlights the importance of evaluating stress in order to determine species-specific stocking densities. The results are thus relevant to a wide audience in the field of aquaculture and experimental biology
Understanding risks and consequences of pathogen infections on the physiological performance of outmigrating Chinook salmon
The greatest concentration of at-risk anadromous salmonids is found in California (USA)-the populations that have been negatively impacted by the degradation of freshwater ecosystems. While climate-driven environmental changes threaten salmonids directly, they also change the life cycle dynamics and geographic distribution of pathogens, their resulting host-pathogen interactions and potential for disease progression. Recent studies have established the correlation between pathogen detection and salmonid smolt mortality during their migration to the ocean. The objective of the present study was to screen for up to 47 pathogens in juvenile Chinook salmon (Oncorhynchus tshawytscha) that were held in cages at two key sites of the Sacramento River (CA, USA) and measure potential consequences on fish health. To do so, we used a combination of transcriptomic analysis, enzymatic assays for energy metabolism and hypoxia and thermal tolerance measures. Results revealed that fish were infected by two myxozoan parasites: Ceratonova shasta and Parvicapsula minibicornis within a 2-week deployment. Compared to the control fish maintained in our rearing facility, infected fish displayed reduced body mass, depleted hepatic glycogen stores and differential regulation of genes involved in the immune and general stress responses. This suggests that infected fish would have lower chances of migration success. In contrast, hypoxia and upper thermal tolerances were not affected by infection, suggesting that infection did not impair their capacity to cope with acute abiotic stressors tested in this study. An evaluation of long-term consequences of the observed reduced body mass and hepatic glycogen depletion is needed to establish a causal relationship between salmon parasitic infection and their migration success. This study highlights that to assess the potential sublethal effects of a stressor, or to determine a suitable management action for fish, studies need to consider a combination of endpoints from the molecular to the organismal level
The transcriptome-wide effects of exposure to a pyrethroid pesticide on the Critically Endangered delta smelt Hypomesus transpacificus
Exposure to permethrin or chlorpyrifos causes differential dose- and time-dependent behavioral effects at early larval stages of an endangered teleost species
Pyrethroid and organophosphate pesticides are two of the most commonly used classes of insecticide worldwide. At sublethal concentrations, permethrin (a pyrethroid) and chlorpyrifos (an organophosphate) impact behavior in model fish species. We investigated behavioral effects of environmentally relevant concentrations of permethrin or chlorpyrifos on early larval delta smelt Hypomesus transpacificus, a Critically Endangered teleost species endemic to the San Francisco Bay Delta, California, USA. Using a photomotor behavioral assay of oscillating light and dark periods, we measured distance moved, turn angle, meander, angular velocity, rotations, thigmotaxis (time spent in the border versus center), and swim speed duration and frequency. The lowest concentrations of permethrin used in the tests (0.05 and 0.5 µg l-1) caused significant increases in distance moved at 72 and 96 h, respectively. At 48, 72, and 96 h of exposure, 5 µg l-1 of permethrin caused a hyperactive state in which the larvae significantly decreased thigmotaxis, quickly turning in short bouts of activity, characterized by significant increases in rotations and freezing events. Larvae exposed to 0.05 µg l-1 chlorpyrifos significantly increased thigmotaxis at 72 and 96 h. In response to 5 µg l-1 chlorpyrifos, larvae significantly increased velocity at 72 h exposure, and significantly increased freezing events at 96 h. Behavioral data on larval delta smelt exposed to contaminants present in their limited habitat have the potential to aid evaluations of the suitability of spawning and rearing habitats for this endangered species, thus improving conservation management strategies focused on this sensitive life stage.</jats:p
The transcriptome-wide effects of exposure to a pyrethroid pesticide on the Critically Endangered delta smelt Hypomesus transpacificus
A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus
- …
