136 research outputs found
Long-term follow up of factual knowledge after a single, randomised problem-based learning course
BACKGROUND: The long-term effect of problem-based learning (PBL) on factual knowledge is poorly investigated. We took advantage of a previous randomised comparison between PBL and traditional teaching in a 3(rd )year course to follow up factual knowledge of the students during their 4(th )and 5(th )year of medical school training. METHODS: 3(rd )year medical students were initially randomized to participate in a problem-based (PBL, n = 55), or a lecture-based (LBL, n = 57) course in basic pharmacology. Summative exam results were monitored 18 months later (after finishing a lecture-based course in clinical pharmacology). Additional results of an unscheduled, formative exam were obtained 27 months after completion of the first course. RESULTS: Of the initial sample of 112 students, 90 participated in the second course and exam (n = 45, 45). 32 (n = 17 PBL, n = 15 LBL) could be exposed to the third, formative exam. Mean scores (± SD) were 22.4 ± 6.0, 27.4 ± 4.9 and 20.1 ± 5.0 (PBL), or 22.2 ± 6.0, 28.4 ± 5.1 and 19.0 ± 4.7 (LBL) in the first, second and third test, respectively (maximum score: 40). No significant differences were found between the two groups. CONCLUSION: A small-scale exposure to PBL, applied under randomized conditions but in the context of a traditional curriculum, does not sizeably change long-term presence of factual knowledge within the same discipline
Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations.
PURPOSE OF REVIEW: Pre-participation cardiovascular evaluation with electrocardiography is normal practice for most sporting bodies. Awareness about sudden cardiac death in athletes and recognizing how screening can help identify vulnerable athletes have empowered different sporting disciplines to invest in the wellbeing of their athletes. RECENT FINDINGS: Discerning physiological electrical alterations due to athletic training from those representing cardiac pathology may be challenging. The mode of investigation of affected athletes is dependent on the electrical anomaly and the disease(s) in question. This review will highlight specific pathological ECG patterns that warrant assessment and surveillance, together with an in-depth review of the recommended algorithm for evaluation
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley
<p>Abstract</p> <p>Background</p> <p>The barley-<it>Puccinia hordei </it>(barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, <it>Rphq</it>2 and <it>Rphq</it>3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown.</p> <p>Results</p> <p>An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with <it>Puccinia hordei</it>. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at <it>Rphq</it>2 and <it>Rphq</it>3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (<it>HvERF4</it>) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that <it>Rphq</it>2 or <it>Rphq</it>3 contains a <it>trans</it>-eQTL that modulates expression of <it>HvERF4</it>. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within <it>Rphq</it>2 or <it>Rphq</it>3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of <it>Ph</it>-responsive genes and that hormone-related signalling pathways are actively involved in response to <it>Puccinia hordei</it>.</p> <p>Conclusions</p> <p>Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover <it>trans</it>-eQTL mediated regulatory relays initiated from genes within the QTL regions.</p
Oligodendroglial neoplasms with ganglioglioma-like maturation: a diagnostic pitfall
Although oligodendroglial neoplasms are traditionally considered purely glial, increasing evidence suggests that they are capable of neuronal or neurocytic differentiation. Nevertheless, ganglioglioma-like foci (GGLF) have not been previously described. Herein, we report seven examples where the primary differential diagnosis was a ganglioglioma with an oligodendroglial component. These five male and two female patients ranged in age from 29 to 63 (median 44) years at initial presentation and neuroimaging features were those of diffuse gliomas in general. At presentation, the glial component was oligodendroglioma in six and oligoastrocytoma in one; one was low-grade and six were anaplastic. A sharp demarcation from adjacent GGLF was common, although some intermingling was always present. The GGLF included enlarged dysmorphic and occasionally binucleate ganglion cells, Nissl substance, expression of neuronal antigens, GFAP-positive astrocytic elements, and low Ki-67 labeling indices. In contrast to classic ganglioglioma, however, cases lacked eosinophilic granular bodies and CD34-positive tumor cells. Scattered bizarre astrocytes were also common and one case had focal neurocytic differentiation. By FISH analysis, five cases showed 1p/19q codeletion. In the four cases with deletions and ample dysmorphic ganglion cells for analysis, the deletions were found in both components. At last follow-up, two patients suffered recurrences, one developed radiation necrosis mimicking recurrence, and one died of disease 7.5 years after initial surgery. We conclude that GGLF represents yet another form of neuronal differentiation in oligodendroglial neoplasms. Recognition of this pattern will prevent a misdiagnosis of ganglioglioma with its potential for under-treatment
The Potent Respiratory System of Osedax mucofloris (Siboglinidae, Annelida) - A Prerequisite for the Origin of Bone-Eating Osedax?
Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2 depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2 demand due to aerobic heterotrophic endosymbionts
Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons
Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement of R-gene mediated resistance
- …