17 research outputs found

    Asteroseismology

    Full text link
    Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar Systems", eds. T. D. Oswalt et al., Springer Verla

    The epidemiology of venous thromboembolism

    Full text link

    Quantifying overlap between the Deepwater Horizon oil spill and predicted bluefin tuna spawning habitat in the Gulf of Mexico

    No full text
    Atlantic bluefin tuna (Thunnus thynnus) are distributed throughout the North Atlantic and are both economically valuable and heavily exploited. The fishery is currently managed as two spawning populations, with the GOM population being severely depleted for over 20 years. In April-August of 2010, the Deepwater Horizon oil spill released approximately 4 million barrels of oil into the GOM, with severe ecosystem and economic impacts. Acute oil exposure results in mortality of bluefin eggs and larvae, while chronic effects on spawning adults are less well understood. Here we used 16 years of electronic tagging data for 66 bluefin tuna to identify spawning events, to quantify habitat preferences, and to predict habitat use and oil exposure within Gulf of Mexico spawning grounds. More than 54,000 km(2) (5%) of predicted spawning habitat within the US EEZ was oiled during the week of peak oil dispersal, with potentially lethal effects on eggs and larvae. Although the oil spill overlapped with a relatively small portion of predicted spawning habitat, the cumulative impact from oil, ocean warming and bycatch mortality on GOM spawning grounds may result in significant effects for a population that shows little evidence of rebuilding

    Misidentification of bluefin tuna larvae: a call for caution and taxonomic reform

    Get PDF
    The international effort to prevent the collapse of Atlantic bluefin tuna (BFT, Thunnus thynnus, Scombridae) stocks exemplifies the challenges associated with modern marine resource conservation. Rampant mismanagement, under-reporting and illegal, unreported and unregulated fishing led to decades of over-exploitation in the BFT fishery. Surveys of larval abundance in the Gulf of Mexico and the Mediterranean Sea have been used as a proxy for both spawning biomass and recruitment by researchers working to improve estimates of stock abundance. Recent genetic barcoding studies have revealed that species identification errors are common among larvae surveys that use morphology-based taxonomy alone. Misidentification of larvae can lead to uncertainty about the spatial distribution of a species, confusion over life history traits and population dynamics, and potentially disguise the collapse or recovery of localized spawning sites. In an effort to identify the source of these errors, we review several weaknesses in modern morphology-based taxonomy including demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic community to embrace advances in digital communications and a general scarcity of modern user-friendly materials. Recent advances in molecular techniques useful for specimen identification and population studies are discussed at length. We advocate a more constructive integration of morphology-based taxonomy and barcoding in order to add confidence to larval surveys and to strengthen associated fisheries managementVersión del editor2,270
    corecore