17,535 research outputs found
Chemical transport across the ITCZ in the central Pacific during an El Niño-Southern Oscillation cold phase event in March-April 1999
We examine interhemispheric transport processes that occurred over the central Pacific during the PEM-Tropics B mission (PTB) in March-April 1999 by correlating the observed distribution of chemical tracers with the prevailing and anomalous windfields. The Intertropical Convergence Zone (ITCZ) had a double structure during PTB, and interhemispheric mixing occurred in the equatorial region between ITCZ branches. The anomalously strong tropical easterly surface wind had a large northerly component across the equator in the central Pacific, causing transport of aged, polluted air into the Southern Hemisphere (SH) at altitudes below 4 km. Elevated concentrations of chemical tracers from the Northern Hemisphere (NH) measured south of the equator in the central Pacific during PTB may represent an upper limit because the coincidence of seasonal and cold phase ENSO conditions are optimum for this transport. Stronger and more consistent surface convergence between the northeasterly and southeasterly trade winds in the Southern Hemisphere (SH) resulted in more total convective activity in the SH branch of the ITCZ, at about 6° S. The middle troposphere between 4-7 km was a complex shear zone between prevailing northeasterly winds at low altitudes and southwesterly winds at higher altitudes. Persistent anomalous streamline patterns and the chemical tracer distribution show that during PTB most transport in the central Pacific was from SH to NH across the equator in the upper troposphere. Seasonal differences in source strength caused larger interhemispheric gradients of chemical tracers during PTB than during the complementary PEM-Tropics A mission in September-October 1996. Copyright 2001 by the American Geophysical Union
Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system
For any given system the number and location of sensors can affect the closed-loop performance as well as the reliability of the system. Hence, one problem in control system design is the selection of the sensors in some optimum sense that considers both the system performance and reliability. Although some methods have been proposed that deal with some of the aforementioned aspects, in this work, a design framework dealing with both control and reliability aspects is presented. The proposed framework is able to identify the best sensor set for which optimum performance is achieved even under single or multiple sensor failures with minimum sensor redundancy. The proposed systematic framework combines linear quadratic Gaussian control, fault tolerant control and multiobjective optimisation. The efficacy of the proposed framework is shown via appropriate simulations on an electro-magnetic suspension system
Classical orbital paramagnetism in non-equilibrium steady state
We report the results of our numerical simulation of classical-dissipative
dynamics of a charged particle subjected to a non-markovian stochastic forcing.
We find that the system develops a steady-state orbital magnetic moment in the
presence of a static magnetic field. Very significantly, the sign of the
orbital magnetic moment turns out to be {\it paramagnetic} for our choice of
parameters, varied over a wide range. This is shown specifically for the case
of classical dynamics driven by a Kubo-Anderson type non-markovian noise.
Natural spatial boundary condition was imposed through (1) a soft (harmonic)
confining potential, and (2) a hard potential, approximating a reflecting wall.
There was no noticeable qualitative difference. What appears to be crucial to
the orbital magnetic effect noticed here is the non-markovian property of the
driving noise chosen. Experimental realization of this effect on the laboratory
scale, and its possible implications are briefly discussed. We would like to
emphasize that the above steady-state classical orbital paramagnetic moment
complements, rather than contradicts the Bohr-van Leeuwen (BvL) theorem on the
absence of classical orbital diamagnetism in thermodynamic equilibrium.Comment: 6 pages, 4 figures, Has appeared in Journal of Astrophysics and
Astronomy special issue on 'Physics of Neutron Stars and Related Objects',
celebrating the 75th birth-year of G. Srinivasa
Chemical characteristics of Pacific tropospheric air in the region of the Intertropical Convergence Zone and South Pacific Convergence Zone
The Pacific Exploratory Mission (PEM)-Tropics provided extensive aircraft data to study the atmospheric chemistry of tropospheric air in Pacific Ocean regions, extending from Hawaii to New Zealand and from Fiji to east of Easter Island. This region, especially the tropics, includes some of the cleanest tropospheric air of the world and, as such, is important for studying atmospheric chemical budgets and cycles. The region also provides a sensitive indicator of the global-scale impact of human activity on the chemistry of the troposphere, and includes such important features as the Pacific "warm pool," the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), and Walker Cell circulations. PEM-Tropics was conducted from August to October 1996. The ITCZ and SPCZ are major upwelling regions within the South Pacific and, as such, create boundaries to exchange of tropospheric air between regions to the north and south. Chemical data obtained in the near vicinity of the ITCZ and the SPCZ are examined. Data measured within the convergent zones themselves are not considered. The analyses show that air north and south of the convergent zones have different chemical signatures, and the signatures are reflective of the source regions and transport histories of the air. Air north of the ITCZ shows a modest urban/industrialized signature compared to air south of the ITCZ. The chemical signature of air south of the SPCZ is dominated by combustion emissions from biomass burning, while air north of the SPCZ is relatively clean and of similar composition to ITCZ south air. Chemical signature differences of air north and south of the zones are most pronounced at altitudes below 5 km, and, as such, show that the ITCZ and SPCZ are effective low-altitude barriers to the transport of tropospheric air. At altitudes of 8 to 10 km, chemical signatures are less dissimilar, and air backward trajectories (to 10 days) show cross-convergent-zone flow. At altitudes below about 5 km, little cross-zonal flow is observed. Chemical signatures presented include over 30 trace chemical species including ultrafine, fine, and heated-fine (250°C) aerosol. Copyright 1999 by the American Geophysical Union
Recommended from our members
Photochemistry of HOx in the upper troposphere at northern midlatitudes
The factors controlling the concentrations of HOx radicals (= OH + peroxy) in the upper troposphere (8-12 km) are examined using concurrent aircraft observations of OH, HO2, H2O2, CH3OOH, and CH2O made during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) at northern midlatitudes in the fall. These observations, complemented by concurrent measurements of O3, H2O, NO, peroxyacetyl nitrate (PAN), HNO3, CH4, CO, acetone, hydrocarbons, actinic fluxes, and aerosols, allow a highly constrained mass balance analysis of HOx and of the larger chemical family HOy (= HOx + 2 H2O2 + 2 CH3OOH + HNO2 + HNO4). Observations of OH and HO2 are successfully simulated to within 40% by a diel steady state model constrained with observed H2O2 and CH3OOH. The model captures 85% of the observed HOx variance, which is driven mainly by the concentrations of NOx (= NO + NO2) and by the strength of the HOx primary sources. Exceptions to the good agreement between modeled and observed HOx are at sunrise and sunset, where the model is too low by factors of 2-5, and inside cirrus clouds, where the model is too high by factors of 1.2-2. Heterogeneous conversion of NO2 to HONO on aerosols (γNO2=10-3) during the night followed by photolysis of HONO could explain part of the discrepancy at sunrise. Heterogeneous loss of HO2 on ice crystals (γice_HO2=0.025) could explain the discrepancy in cirrus. Primary sources of HOx from O(1D)+H2O and acetone photolysis were of comparable magnitude during SONEX. The dominant sinks of HOy were OH+HO2 (NOx<50 parts per trillion by volume (pptv)) and OH+HNO4 (NOx>50 pptv). Observed H2O2 concentrations are reproduced by model calculations to within 50% if one allows in the model for heterogeneous conversion of HO2 to H2O2 on aerosols (γHO2=0.2). Observed CH3OOH concentrations are underestimated by a factor of 2 on average. Observed CH2O concentrations were usually below the 50 pptv detection limit, consistent with model results; however, frequent occurrences of high values in the observations (up to 350 pptv) are not captured by the model. These high values are correlated with high CH3OH and with cirrus clouds. Heterogeneous oxidation of CH3OH to CH2O on aerosols or ice crystals might provide an explanation (γice_CH3OH∼0.01 would be needed). Copyright 2000 by the American Geophysical Union
Recommended from our members
Impacts of aerosols and clouds on photolysis frequencies and photochemistry during TRACE-P: 2. Three-dimensional study using a regional chemical transport model
Minimal symmetric Darlington synthesis
We consider the symmetric Darlington synthesis of a p x p rational symmetric
Schur function S with the constraint that the extension is of size 2p x 2p.
Under the assumption that S is strictly contractive in at least one point of
the imaginary axis, we determine the minimal McMillan degree of the extension.
In particular, we show that it is generically given by the number of zeros of
odd multiplicity of I-SS*. A constructive characterization of all such
extensions is provided in terms of a symmetric realization of S and of the
outer spectral factor of I-SS*. The authors's motivation for the problem stems
from Surface Acoustic Wave filters where physical constraints on the
electro-acoustic scattering matrix naturally raise this mathematical issue
Investigating in-service failures of water pipes from a multiaxial notch fatigue point of view: A conceptual study
Many mechanisms and processes can cause deterioration and ultimately failure of water distribution pipes during
in-service operation, amongst these is damage caused by metal fatigue. This paper summarises an attempt at formalising
a novel methodology suitable for estimating the number of years taken for a through thickness fatigue crack to form in
this complex scenario. The devised method is based on the so-called modified Wo¨hler curve method and can be applied
to estimate fatigue damage of water pipes independently from the degree of multiaxiality and non-proportionality of the
load history. The computational approach of the proposed fatigue life estimation technique makes full use of an incremental
procedure: fatigue damage is evaluated year by year by assuming that all variable involved in the process can
change over time. The detrimental effect of corrosion pits is directly accounted for by treating them as conventional
notches whose size increases with time. Finally, by taking as reference information the number of years for a blowout
hole to form, the proposed approach is used to show how the lifetime of grey cast iron pipes can be remarkably
shortened by fatigue
Recommended from our members
An assessment of western North Pacific ozone photochemistry based on springtime observations from NASA's PEM-West B (1994) and TRACE-P (2001) field studies
The current study provides a comparison of the photochemical environments for two NASA field studies focused on the western North Pacific (PEM-West-B (PWB) and TRACE-P (TP)). These two studies were separated in calendar time by approximately 7 years. Both studies were carried out under springtime conditions, with PWB being launched in 1994 and TP being deployed in 2001 (i.e., 23 February - 15 March 1994 and 10 March-15 April 2001, respectively). Because of the 7-year time separation, these two studies presented a unique scientific opportunity to assess whether evidence could be found to support the Department of Energy\u27s projections in 1997 that increases in anthropogenic emissions from East Asia could reach 5%/yr. Such projections would lead one to the conclusion that a significant shift in the atmospheric photochemical properties of the western North Pacific would occur. To the contrary, the findings from this study support the most recent emission inventory data [Streets et al., 2003] in that they show no significant systematic trend involving increases in any O3 precursor species and no evidence for a significant shift in the level of photochemical activity over the western North Pacific. This conclusion was reached in spite of there being real differences in the concentration levels of some species as well as differences in photochemical activity between PWB and TP. However, nearly all of these differences were shown to be a result of a near 3-week shift in TP\u27s sampling window relative to PWB, thus placing it later in the spring season. The photochemical enhancements seen during TP were most noticeable for latitudes in the range of 25-45°N. Most important among these were increases in J(O1D), OH, and HO2 and values for photochemical ozone formation and destruction, all of which were typically two times larger than those calculated for PWB. A comparison of these airborne results with ozonesonde data from four Japanese stations provided further evidence showing that the 3-week shift in the respective sampling windows of PWB and TP was a likely cause for the differences seen in O3 levels and in photochemical activity between the two airborne studies. Copyright 2003 by the American Geophysical Union
Impact of aircraft emissions on reactive nitrogen over the North Atlantic Flight Corridor region
- …
