13 research outputs found

    Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget

    Full text link
    OBSERVED increases in concentrations of chlorine in the stratosphere1-7 have been widely implicated in the depletion of lower-stratospheric ozone over the past two decades8-14. The present concentration of stratospheric chlorine is more than five times that expected from known natural 'background' emissions from the oceans and biomass burning15-18, and the balance has been estimated to be dominantly anthropogenic in origin, primarily due to the breakdown products of chlorofluorocarbons (CFCs)19,20. But despite the wealth of scientific data linking chlorofluorocarbon emissions to the observed chlorine increases, the political sensitivity of the ozone-depletion issue has generated a re-examination of the evidence21,22. Here we report a four-year global time series of satellite observations of hydrogen chloride (HCl) and hydrogen fluoride (HF) in the stratosphere, which shows conclusively that chlorofluorocarbon releases - rather than other anthropogenic or natural emissions - are responsible for the recent global increases in stratospheric chlorine concentrations. Moreover, all but a few per cent of observed stratospheric chlorine amounts can be accounted for by known natural and anthropogenic tropospheric emissions. Altogether, these results implicate the chlorofluorocarbon s beyond reasonable doubt as dominating ozone depletion in the lower stratosphere

    The Solar System D/H Ratio: Observations and Theories

    No full text
    corecore