90 research outputs found

    Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic

    Get PDF
    Permafrost-affected soils of the Siberian Arctic were investigated with regard to identification of nitrite oxidizing bacteria active at low temperature. Analysis of the fatty acid profiles of enrichment cultures grown at 4°C, 10°C and 17°C revealed a pattern that was different from that of known nitrite oxidizers but was similar to fatty acid profiles of Betaproteobacteria. Electron microscopy of two enrichment cultures grown at 10°C showed prevalent cells with a conspicuous ultrastructure. Sequence analysis of the 16S rRNA genes allocated the organisms to a so far uncultivated cluster of the Betaproteobacteria, with Gallionella ferruginea as next related taxonomically described organism. The results demonstrate that a novel genus of chemolithoautotrophic nitrite oxidizing bacteria is present in polygonal tundra soils and can be enriched at low temperatures up to 17°C. Cloned sequences with high sequence similarities were previously reported from mesophilic habitats like activated sludge and therefore an involvement of this taxon in nitrite oxidation in nonarctic habitats is suggested. The presented culture will provide an opportunity to correlate nitrification with nonidentified environmental clones in moderate habitats and give insights into mechanisms of cold adaptation. We propose provisional classification of the novel nitrite oxidizing bacterium as 'Candidatus Nitrotoga arctica'

    Catastrophic Floods May Pave the Way for Increased Genetic Diversity in Endemic Artesian Spring Snail Populations

    Get PDF
    The role of disturbance in the promotion of biological heterogeneity is widely recognised and occurs at a variety of ecological and evolutionary scales. However, within species, the impact of disturbances that decimate populations are neither predicted nor known to result in conditions that promote genetic diversity. Directly examining the population genetic consequences of catastrophic disturbances however, is rarely possible, as it requires both longitudinal genetic data sets and serendipitous timing. Our long-term study of the endemic aquatic invertebrates of the artesian spring ecosystem of arid central Australia has presented such an opportunity. Here we show a catastrophic flood event, which caused a near total population crash in an aquatic snail species (Fonscochlea accepta) endemic to this ecosystem, may have led to enhanced levels of within species genetic diversity. Analyses of individuals sampled and genotyped from the same springs sampled both pre (1988–1990) and post (1995, 2002–2006) a devastating flood event in 1992, revealed significantly higher allelic richness, reduced temporal population structuring and greater effective population sizes in nearly all post flood populations. Our results suggest that the response of individual species to disturbance and severe population bottlenecks is likely to be highly idiosyncratic and may depend on both their ecology (whether they are resilient or resistant to disturbance) and the stability of the environmental conditions (i.e. frequency and intensity of disturbances) in which they have evolved

    Models and simulations for the photometric lsst astronomical time series classification challenge (Plasticc)

    Get PDF
    We describe the simulated data sample for the "Photometric LSST Astronomical Time Series Classification Challenge" (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the Large Synoptic Survey Telescope (LSST), a new facility expected to start in the early 2020s. The challenge was hosted by Kaggle, ran from 2018 September 28 to 2018 December 17, and included 1,094 teams competing for prizes. Here we provide details of the 18 transient and variable source models, which were not revealed until after the challenge, and release the model libraries at this https URL. We describe the LSST Operations Simulator used to predict realistic observing conditions, and we describe the publicly available SNANA simulation code used to transform the models into observed fluxes and uncertainties in the LSST passbands (ugrizy). Although PLAsTiCC has finished, the publicly available models and simulation tools are being used within the astronomy community to further improve classification, and to study contamination in photometrically identified samples of type Ia supernova used to measure properties of dark energy. Our simulation framework will continue serving as a platform to improve the PLAsTiCC models, and to develop new models

    Variation in the Large-Scale Organization of Gene Expression Levels in the Hippocampus Relates to Stable Epigenetic Variability in Behavior

    Get PDF
    Despite sharing the same genes, identical twins demonstrate substantial variability in behavioral traits and in their risk for disease. Epigenetic factors-DNA and chromatin modifications that affect levels of gene expression without affecting the DNA sequence-are thought to be important in establishing this variability. Epigenetically-mediated differences in the levels of gene expression that are associated with individual variability traditionally are thought to occur only in a gene-specific manner. We challenge this idea by exploring the large-scale organizational patterns of gene expression in an epigenetic model of behavioral variability.To study the effects of epigenetic influences on behavioral variability, we examine gene expression in genetically identical mice. Using a novel approach to microarray analysis, we show that variability in the large-scale organization of gene expression levels, rather than differences in the expression levels of specific genes, is associated with individual differences in behavior. Specifically, increased activity in the open field is associated with increased variance of log-transformed measures of gene expression in the hippocampus, a brain region involved in open field activity. Early life experience that increases adult activity in the open field also similarly modifies the variance of gene expression levels. The same association of the variance of gene expression levels with behavioral variability is found with levels of gene expression in the hippocampus of genetically heterogeneous outbred populations of mice, suggesting that variation in the large-scale organization of gene expression levels may also be relevant to phenotypic differences in outbred populations such as humans. We find that the increased variance in gene expression levels is attributable to an increasing separation of several large, log-normally distributed families of gene expression levels. We also show that the presence of these multiple log-normal distributions of gene expression levels is a universal characteristic of gene expression in eurkaryotes. We use data from the MicroArray Quality Control Project (MAQC) to demonstrate that our method is robust and that it reliably detects biological differences in the large-scale organization of gene expression levels.Our results contrast with the traditional belief that epigenetic effects on gene expression occur only at the level of specific genes and suggest instead that the large-scale organization of gene expression levels provides important insights into the relationship of gene expression with behavioral variability. Understanding the epigenetic, genetic, and environmental factors that regulate the large-scale organization of gene expression levels, and how changes in this large-scale organization influences brain development and behavior will be a major future challenge in the field of behavioral genomics

    Further evidence for an HLA-related recessive mutation in nasopharyngeal carcinoma among the Chinese

    Get PDF
    We typed 247 cases of nasopharyngeal carcinoma (NPC), a disease predominantly of the southern Chinese, and 274 controls from the Chao Shan region of China's Guangdong province for HLA A and B. Besides confirming the established associations with A2, A33, B46 and B58 (positive associations) and A11 (negative association), the results demonstrated a number of rarer alleles with strong negative association with NPC. Our data, combined with those from the previous studies in Southern Chinese, displayed the protective effects for A31 (odds ratio (OR)=0.0; 95% confidence interval (CI)=0–0.11), B13 (OR=0.50; 95% CI=0.35–0.69), B27 (OR=0.49; 95% CI=0.25–0.92), B39 (OR=0.18; 95% CI=0.06–0.48) and B55 (OR=0.32; 95% CI=0.14–0.68), the ORs comparing individuals with or without each allele. Other ethnic groups do not display such large HLA-associated variation in NPC risk. We show that a linked NPC gene with dominant mode of action could not generate such large protective effects. The results provide strong supporting evidence for the existence of a southern Chinese specific, recessive NPC gene closely linked to the HLA region as a major determinant of the Chinese risk for the disease

    Transcriptome characterization of the South African abalone Haliotis midae using sequencing-by-synthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worldwide, the genus <it>Haliotis </it>is represented by 56 extant species and several of these are commercially cultured. Among the six abalone species found in South Africa, <it>Haliotis midae </it>is the only aquacultured species. Despite its economic importance, genomic sequence resources for <it>H. midae</it>, and for abalone in general, are still scarce. Next generation sequencing technologies provide a fast and efficient tool to generate large sequence collections that can be used to characterize the transcriptome and identify expressed genes associated with economically important traits like growth and disease resistance.</p> <p>Results</p> <p>More than 25 million short reads generated by the Illumina Genome Analyzer were <it>de novo </it>assembled in 22,761 contigs with an average size of 260 bp. With a stringent <it>E</it>-value threshold of 10<sup>-10</sup>, 3,841 contigs (16.8%) had a BLAST homologous match against the Genbank non-redundant (NR) protein database. Most of these sequences were annotated using the gene ontology (GO) and eukaryotic orthologous groups of proteins (KOG) databases and assigned to various functional categories. According to annotation results, many gene families involved in immune response were identified. Thousands of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) were detected. Setting stringent parameters to ensure a high probability of amplification, 420 primer pairs in 181 contigs containing SSR loci were designed.</p> <p>Conclusion</p> <p>This data represents the most comprehensive genomic resource for the South African abalone <it>H. midae </it>to date. The amount of assembled sequences demonstrated the utility of the Illumina sequencing technology in the transcriptome characterization of a non-model species. It allowed the development of several markers and the identification of promising candidate genes for future studies on population and functional genomics in <it>H. midae </it>and in other abalone species.</p

    Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization.

    Get PDF
    Abstract In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of resource limitations, might respond to environmental change. This study reports root length density and biomass development in young stands of eastern cottonwood (Populus deltoidies Bartr.) and American sycamore (Platanus occidentalis L.) that have narrow, high resource site requirements, and compares them with sweetgum (Liquidambar styraczj7ua L.) and loblolly pine (Pinus taeda L.), which have more robust site requirements. Fine roots (5 mm) were sampled to determine spatial distribu-tion in response to fertilizer and irrigation treatments delivered through drip irrigation tubes. Root length density and biomass were predominately controlled by stand development, depth and proximity to drip tubes. After accounting for this spatial and temporal variation, there was a significant increase in RLD with fertilization and irrigation for all genotypes. The response to fertilization was greater than that of irrigation. Both fine and coarse roots responded positively to resources delivered through the drip tube, indicating a wholeroot- system response to resource enrichment and not just a feeder root response. The plastic response to drip tube water and nutrient enrichment demonstmte the capability of root systems to respond to supply heterogeneity by increasing acquisition surface. Fineroot biomass, root density and specific root length were greater for broadleaved species than pine. Roots of all genotypes explored the rooting volume within 2 years, but this occurred faster and to higher root length densities in broadleaved species, indicating they had greater initial opportunity for resource acquisition than pine. Sweetgum's root characteristics and its response to resource availability were similar to the other broadleaved species, despite its hnctional resemblance to pine regarding robust site requirements. It was concluded that genotypes, irrigation arid fertilization significantly influenced tree root system development, which varied spatially in response to resource-supply heterogeneity created by dnp tubes. Knowledge of spatial and temporal patterns of root distribution in these stands will be used to interpret nutrient acquisition and soil respiration measurements
    corecore