169 research outputs found

    5D gravity and the discrepant G measurements

    Full text link
    It is shown that 5D Kaluza-Klein theory stabilized by an external bulk scalar field may solve the discrepant laboratory G measurements. This is achieved by an effective coupling between gravitation and the geomagnetic field. Experimental considerations are also addressed.Comment: 13 pages, to be published in: Proceedings of the 18th Course of the School on Cosmology and Gravitation: The gravitational Constant. Generalized gravitational theories and experiments (30 April-10 May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata, (Kluwer), 13pp. (in print) (2003

    The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep

    Get PDF
    During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators

    Trees and shrubs as sources of fodder in Australia

    Get PDF
    Experience with browse plants in Australia is briefly reviewed in terms of their forage value to animals, their economic value to the landholder and their ecological contribution to landscape stability. Of the cultivated species only two have achieved any degree of commercial acceptance (Leucaena leucocephala and Chamaecytisus palmensis). Both of these are of sufficiently high forage value to be used as the sole source of feed during seasonal periods of nutritional shortage. Both are also leguminous shrubs that establish readily from seed. It is suggested that a limitation in their present use is the reliance on stands of single species which leaves these grazing systems vulnerable to disease and insects. Grazing systems so far developed for high production and persistence of cultivated species involve short periods of intense grazing followed by long periods of recovery. Similar management may be necessary in the arid and semi-arid rangelands where palatable browse species are in decline

    Membrane Porters of ATP-Binding Cassette Transport Systems Are Polyphyletic

    Get PDF
    The ATP-binding cassette (ABC) superfamily consists of both importers and exporters. These transporters have, by tradition, been classified according to the ATP hydrolyzing constituents, which are monophyletic. The evolutionary origins of the transmembrane porter proteins/domains are not known. Using five distinct computer programs, we here provide convincing statistical data suggesting that the transmembrane domains of ABC exporters are polyphyletic, having arisen at least three times independently. ABC1 porters arose by intragenic triplication of a primordial two-transmembrane segment (TMS)-encoding genetic element, yielding six TMS proteins. ABC2 porters arose by intragenic duplication of a dissimilar primordial three-TMS-encoding genetic element, yielding a distinctive protein family, nonhomologous to the ABC1 proteins. ABC3 porters arose by duplication of a primordial four-TMS-encoding genetic element, yielding either eight- or 10-TMS proteins. We assign each of 48 of the 50 currently recognized families of ABC exporters to one of the three evolutionarily distinct ABC types. Currently available high-resolution structural data for ABC porters are fully consistent with our findings. These results provide guides for future structural and mechanistic studies of these important transport systems

    Computational Analysis of Constraints on Noncoding Regions, Coding Regions and Gene Expression in Relation to Plasmodium Phenotypic Diversity

    Get PDF
    Malaria-causing Plasmodium species exhibit marked differences including host choice and preference for invading particular cell types. The genetic bases of phenotypic differences between parasites can be understood, in part, by investigating constraints on gene expression and genic sequences, both coding and regulatory.We investigated the evolutionary constraints on sequence and expression of parasitic genes by applying comparative genomics approaches to 6 Plasmodium genomes and 2 genome-wide expression studies. We found that the coding regions of Plasmodium transcription factor and sexual development genes are relatively less constrained, as are those of genes encoding CCCH zinc fingers and invasion proteins, which all play important roles in these parasites. Transcription factors and genes with stage-restricted expression have conserved upstream regions and so do several gene classes critical to the parasite's lifestyle, namely, ion transport, invasion, chromatin assembly and CCCH zinc fingers. Additionally, a cross-species comparison of expression patterns revealed that Plasmodium-specific genes exhibit significant expression divergence.Overall, constraints on Plasmodium's protein coding regions confirm observations from other eukaryotes in that transcription factors are under relatively lower constraint. Proteins relevant to the parasite's unique lifestyle also have lower constraint on their coding regions. Greater conservation between Plasmodium species in terms of promoter motifs suggests tight regulatory control of lifestyle genes. However, an interspecies divergence in expression patterns of these genes suggests that either expression is controlled via genomic or epigenomic features not encoded in the proximal promoter sequence, or alternatively, the combinatorial interactions between motifs confer species-specific expression patterns

    Long-term radiographic follow-up of the Nissen fundoplication in children

    Full text link
    This study examined 46 children 5–9 years (mean 6.7) after Nissen fundoplication surgery for gastroesophageal reflux (GER). Eleven were deceased and ten of the 35 families declined objective evaluation. The remaining 25 children (71%) had a barium swallow examination. In 16 of the 25 patients the fundoplication was intact. In 2 patients a small portion of the fundoplication was displaced above the diaphragm. In 5 patients there was residual esophageal disease. In 3 patients (one with esophageal disease), with a hiatus hernia prior to surgery, despite immediate postoperative reduction, the barium swallow examination done for this study revealed recurrent hiatus hernia but no GER. Long-term results of the Nissen fundoplication reveal success in eliminating clinically significant gastroesophageal reflux. Those patients with esophageal disease prior to the surgery need close interval follow-up to monitor continuing problems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46689/1/247_2006_Article_BF02389563.pd

    Differential Functional Constraints on the Evolution of Postsynaptic Density Proteins in Neocortical Laminae

    Get PDF
    The postsynaptic density (PSD) is a protein dense complex on the postsynaptic membrane of excitatory synapses that is implicated in normal nervous system functions such as synaptic plasticity, and also contains an enrichment of proteins involved in neuropsychiatric disorders. It has recently been reported that the genes encoding PSD proteins evolved more slowly than other genes in the human brain, but the underlying evolutionary advantage for this is not clear. Here, we show that cortical gene expression levels could explain most of this effect, indicating that expression level is a primary contributor to the evolution of these genes in the brain. Furthermore, we identify a positive correlation between the expression of PSD genes and cortical layers, with PSD genes being more highly expressed in deep layers, likely as a result of layer-enriched transcription factors. As the cortical layers of the mammalian brain have distinct functions and anatomical projections, our results indicate that the emergence of the unique six-layered mammalian cortex may have provided differential functional constraints on the evolution of PSD genes. More superficial cortical layers contain PSD genes with less constraint and these layers are primarily involved in intracortical projections, connections that may be particularly important for evolved cognitive functions. Therefore, the differential expression and evolutionary constraint of PSD genes in neocortical laminae may be critical not only for neocortical architecture but the cognitive functions that are dependent on this structure

    Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving variations in the transcriptome of many genes. AD does not affect all brain regions simultaneously. Identifying the differences among the affected regions may shed more light onto the disease progression. We developed a novel method involving the differential topology of gene coexpression networks to understand the association among affected regions and disease severity.</p> <p>Methods</p> <p>We analysed microarray data of four regions - entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC) and middle temporal gyrus (MTG) from AD affected and normal subjects. A coexpression network was built for each region and the topological overlap between them was examined. Genes with zero topological overlap between two region-specific networks were used to characterise the differences between the two regions.</p> <p>Results and conclusion</p> <p>Results indicate that MTG shows early AD pathology compared to the other regions. We postulate that if the MTG gets affected later in the disease, post-mortem analyses of individuals with end-stage AD will show signs of early AD in the MTG, while the EC, HIP and PCC will have severe pathology. Such knowledge is useful for data collection in clinical studies where sample selection is a limiting factor as well as highlighting the underlying biology of disease progression.</p

    Structural Transformation of the Tandem Ubiquitin-Interacting Motifs in Ataxin-3 and Their Cooperative Interactions with Ubiquitin Chains

    Get PDF
    The ubiquitin-interacting motif (UIM) is a short peptide with dual function of binding ubiquitin (Ub) and promoting ubiquitination. We elucidated the structures and dynamics of the tandem UIMs of ataxin-3 (AT3-UIM12) both in free and Ub-bound forms. The solution structure of free AT3-UIM12 consists of two α-helices and a flexible linker, whereas that of the Ub-bound form is much more compact with hydrophobic contacts between the two helices. NMR dynamics indicates that the flexible linker becomes rigid when AT3-UIM12 binds with Ub. Isothermal titration calorimetry and NMR titration demonstrate that AT3-UIM12 binds diUb with two distinct affinities, and the linker plays a critical role in association of the two helices in diUb binding. These results provide an implication that the tandem UIM12 interacts with Ub or diUb in a cooperative manner through an allosteric effect and dynamics change of the linker region, which might be related to its recognitions with various Ub chains and ubiquitinated substrates

    Evolution of the TOR Pathway

    Get PDF
    The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provide a practical framework on which experimental evidence can be compared between species. Here we performed phylogenetic analyses on the components of the TOR pathway and determined their point of invention. We find that the two TOR complexes and a large part of the TOR pathway originated before the Last Eukaryotic Common Ancestor and form a core to which new inputs have been added during animal evolution. In addition, we provide insight into how duplications and sub-functionalization of the S6K, RSK, SGK and PKB kinases shaped the complexity of the TOR pathway. In yeast we identify novel AGC kinases that are orthologous to the S6 kinase. These results demonstrate how a vital signaling pathway can be both highly conserved and flexible in eukaryotes
    corecore