525 research outputs found

    Can Clustal-style progressive pairwise alignment of multiple sequences be used in RNA secondary structure prediction?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In ribonucleic acid (RNA) molecules whose function depends on their final, folded three-dimensional shape (such as those in ribosomes or spliceosome complexes), the secondary structure, defined by the set of internal basepair interactions, is more consistently conserved than the primary structure, defined by the sequence of nucleotides.</p> <p>Results</p> <p>The research presented here investigates the possibility of applying a progressive, pairwise approach to the alignment of multiple RNA sequences by simultaneously predicting an energy-optimized consensus secondary structure. We take an existing algorithm for finding the secondary structure common to two RNA sequences, Dynalign, and alter it to align profiles of multiple sequences. We then explore the relative successes of different approaches to designing the tree that will guide progressive alignments of sequence profiles to create a multiple alignment and prediction of conserved structure.</p> <p>Conclusion</p> <p>We have found that applying a progressive, pairwise approach to the alignment of multiple ribonucleic acid sequences produces highly reliable predictions of conserved basepairs, and we have shown how these predictions can be used as constraints to improve the results of a single-sequence structure prediction algorithm. However, we have also discovered that the amount of detail included in a consensus structure prediction is highly dependent on the order in which sequences are added to the alignment (the guide tree), and that if a consensus structure does not have sufficient detail, it is less likely to provide useful constraints for the single-sequence method.</p

    RNAstructure: software for RNA secondary structure prediction and analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence.</p> <p>Results</p> <p>RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained.</p> <p>Conclusion</p> <p>The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at <url>http://rna.urmc.rochester.edu/RNAstructure.html</url>.</p

    RNA secondary structure prediction from multi-aligned sequences

    Full text link
    It has been well accepted that the RNA secondary structures of most functional non-coding RNAs (ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of conserved secondary structures from evolutionarily related sequences is one important task in RNA bioinformatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in which one secondary structure whose length is equal to that of the input alignment is predicted. I systematically review and classify existing tools and algorithms for the problem, by utilizing the information employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) estimators. I believe that this classification will allow a deeper understanding of each tool and provide users with useful information for selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in a chapter of the book `Methods in Molecular Biology'. Note that this version of the manuscript may differ from the published versio

    Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints

    Get PDF
    BACKGROUND: We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There are two open problems in applying a Sankoff algorithm: development of a good unified scoring system for alignment and folding and development of practical heuristics for dealing with the computational complexity of the algorithm. RESULTS: We use probabilistic models (pair stochastic context-free grammars, pairSCFGs) as a unifying framework for scoring pairwise alignment and folding. A constrained version of the pairSCFG structural alignment algorithm was developed which assumes knowledge of a few confidently aligned positions (pins). These pins are selected based on the posterior probabilities of a probabilistic pairwise sequence alignment. CONCLUSION: Pairwise RNA structural alignment improves on structure prediction accuracy relative to single sequence folding. Constraining on alignment is a straightforward method of reducing the runtime and memory requirements of the algorithm. Five practical implementations of the pairwise Sankoff algorithm – this work (Consan), David Mathews' Dynalign, Ian Holmes' Stemloc, Ivo Hofacker's PMcomp, and Jan Gorodkin's FOLDALIGN – have comparable overall performance with different strengths and weaknesses

    EuroQol (EQ-5D) measure of quality of life predicts mortality, emergency department utilization, and hospital discharge rates in HIV-infected adults under care

    Get PDF
    BACKGROUND: Health-related quality of life (HR-QOL) is a relevant and quantifiable outcome of care. We implemented HR-QOL assessment at all primary care visits at UCSD Owen Clinic using EQ-5D. The study aim was to estimate the prognostic value of EQ-5D for survival, hospitalization, and emergency department (ED) utilization after controlling for CD4 and HIV plasma viral load (pVL). METHODS: We conducted a retrospective analysis of HIV clinic based cohort (1996–2000). The EQ-5D includes single item measures of: mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. Each item is coded using 3-levels (1 = no problems; 2 = some problems; 3 = severe problems). The instrument includes a global rating of current health using a visual analog scale (VAS) ranging from 0 (worst imaginable) to 100 (best imaginable). An additional single item measure of health change (better, much the same, worse) was included. A predicted VAS (pVAS) was estimated by regressing the 5 EQ-5D health states on VAS using reference cell coding of health states and random effects linear models. Survival models were fit using Cox modelling. Hospitalization and ED rate models were estimated using population-averaged Poisson models. RESULTS: 965 patients met eligibility criteria. 12% were female; 42% were non-white. Median time-at-risk was 1.2 years. Median CD4 was 233. Median log(10)(pVL) was 4.6. 47 deaths occurred. In two Cox models controlling for CD4 and pVL, the adjusted hazard ratios (aHR) for VAS and pVAS as time-varying covariates were 0.73 (95% CI: 0.63–0.83) and 0.66 (95% CI: 0.56–0.77) respectively, for every 10 point increase in (p)VAS rating. In Poisson regression models predicting ED visit rates and hospital discharge rates controlling for current CD4 and pVL, each of the EQ-5D health dimensions, VAS, and health change items were significantly (p < 0.05) associated with the outcomes. For ED visit rates, the adjusted incidence rate ratios (aIRR) were 0.86 (0.83–0.89) and 0.79 (0.75–0.82) for VAS and pVAS, respectively. For hospital discharge rates, the aIRR's were 0.85 (0.82–0.88) and 0.79 (0.75–0.82) for VAS and pVAS, respectively. CONCLUSION: EQ-5D is a brief and prognostically useful predictor of mortality, hospitalization, and ED utilization among adults under care for HIV infection, even after adjusting for CD4 and HIV plasma viral load

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands

    Consumption patterns of sweet drinks in a population of Australian children and adolescents (2003–2008)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intake of sweet drinks has previously been associated with the development of overweight and obesity among children and adolescents. The present study aimed to assess the consumption pattern of sweet drinks in a population of children and adolescents in Victoria, Australia.</p> <p>Methods</p> <p>Data on 1,604 children and adolescents (4–18 years) from the comparison groups of two quasi-experimental intervention studies from Victoria, Australia were analysed<it>.</it> Sweet drink consumption (soft drink and fruit juice/cordial) was assessed as one day’s intake and typical intake over the last week or month at two time points between 2003 and 2008 (mean time between measurement: 2.2 years).</p> <p>Results</p> <p>Assessed using dietary recalls, more than 70% of the children and adolescents consumed sweet drinks, with no difference between age groups (p = 0.28). The median intake among consumers was 500 ml and almost a third consumed more than 750 ml per day. More children and adolescents consumed fruit juice/cordial (69%) than soft drink (33%) (p < 0.0001) and in larger volumes (median intake fruit juice/cordial: 500 ml and soft drink: 375 ml). Secular changes in sweet drink consumption were observed with a lower proportion of children and adolescents consuming sweet drinks at time 2 compared to time 1 (significant for age group 8 to <10 years, p = 0.001).</p> <p>Conclusion</p> <p>The proportion of Australian children and adolescents from the state of Victoria consuming sweet drinks has been stable or decreasing, although a high proportion of this sample consumed sweet drinks, especially fruit juice/cordial at both time points.</p

    Negative Effects of Paternal Age on Children's Neurocognitive Outcomes Can Be Explained by Maternal Education and Number of Siblings

    Get PDF
    Background: Recent findings suggest advanced paternal age may be associated with impaired child outcomes, in particular, neurocognitive skills. Such patterns are worrisome given relatively universal trends in advanced countries toward delayed nuptiality and fertility. But nature and nurture are both important for child outcomes, and it is important to control for both when drawing inferences about either pathway. Methods and Findings: We examined cross-sectional patterns in six developmental outcome measures among children in the U.S. Collaborative Perinatal Project (n = 31,346). Many of these outcomes at 8 mo, 4 y, and 7 y of age (Bayley scales, Stanford Binet Intelligence Scale, Graham-Ernhart Block Sort Test, Wechsler Intelligence Scale for Children, Wide Range Achievement Test) are negatively correlated with paternal age when important family characteristics such as maternal education and number of siblings are not included as covariates. But controlling for family characteristics in general and mother’s education in particular renders the effect of paternal age statistically insignificant for most developmental measures. Conclusions: Assortative mating produces interesting relationships between maternal and paternal characteristics that can inject spurious correlation into observational studies via omitted variable bias. Controlling for both nature and nurture reveals little residual evidence of a link between child neurocognitive outcomes and paternal age in these data. Result

    PicXAA-R: Efficient structural alignment of multiple RNA sequences using a greedy approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate and efficient structural alignment of non-coding RNAs (ncRNAs) has grasped more and more attentions as recent studies unveiled the significance of ncRNAs in living organisms. While the Sankoff style structural alignment algorithms cannot efficiently serve for multiple sequences, mostly progressive schemes are used to reduce the complexity. However, this idea tends to propagate the early stage errors throughout the entire process, thereby degrading the quality of the final alignment. For multiple protein sequence alignment, we have recently proposed PicXAA which constructs an accurate alignment in a non-progressive fashion.</p> <p>Results</p> <p>Here, we propose PicXAA-R as an extension to PicXAA for greedy structural alignment of ncRNAs. PicXAA-R efficiently grasps both folding information within each sequence and local similarities between sequences. It uses a set of probabilistic consistency transformations to improve the posterior base-pairing and base alignment probabilities using the information of all sequences in the alignment. Using a graph-based scheme, we greedily build up the structural alignment from sequence regions with high base-pairing and base alignment probabilities.</p> <p>Conclusions</p> <p>Several experiments on datasets with different characteristics confirm that PicXAA-R is one of the fastest algorithms for structural alignment of multiple RNAs and it consistently yields accurate alignment results, especially for datasets with locally similar sequences. PicXAA-R source code is freely available at: <url>http://www.ece.tamu.edu/~bjyoon/picxaa/</url>.</p

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages
    corecore