189 research outputs found

    Evidence for folate-salvage reactions in plants

    Get PDF
    Folates in vivo undergo oxidative cleavage, giving pterin and p-aminobenzoylglutamate (pABAGlu) moieties. These breakdown products are excreted in animals, but their fate is unclear in microorganisms and unknown in plants. As indirect evidence from this and previous studies strongly suggests that plants can have high folate-breakdown rates (approximately 10% per day), salvage of the cleavage products seems likely. Four sets of observations support this possibility. First, cleavage products do not normally accumulate: pools of pABAGlu (including its polyglutamyl forms) are equivalent to, at most, 4-14% of typical total folate pools in Arabidopsis thaliana, Lycopersicon esculentum and Pisum sativum tissues. Pools of the pterin oxidation end-product pterin-6-carboxylate are, likewise, fairly small (3-37%) relative to total folate pools. Second, little pABAGlu built up in A. thaliana plantlets when net folate breakdown was induced by blocking folate synthesis with sulfanilamide. Third, A. thaliana and L. esculentum tissues readily converted supplied breakdown products to folate synthesis precursors: pABAGlu was hydrolysed to p-aminobenzoate and glutamate, and dihydropterin-6-aldehyde was reduced to 6-hydroxymethyldihydropterin. Fourth, both these reactions were detected in vitro; the reduction used NADPH as cofactor. An alternative salvage route for pABAGlu, direct reincorporation into dihydrofolate via the action of dihydropteroate synthase, appears implausible from the properties of this enzyme. We conclude that plants are excellent organisms in which to explore the biochemistry of folate salvage

    Analysis of a viral metagenomic library from 200 m depth in Monterey Bay, California constructed by direct shotgun cloning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses have a profound influence on both the ecology and evolution of marine plankton, but the genetic diversity of viral assemblages, particularly those in deeper ocean waters, remains poorly described. Here we report on the construction and analysis of a viral metagenome prepared from below the euphotic zone in a temperate, eutrophic bay of coastal California.</p> <p>Methods</p> <p>We purified viruses from approximately one cubic meter of seawater collected from 200m depth in Monterey Bay, CA. DNA was extracted from the virus fraction, sheared, and cloned with no prior amplification into a plasmid vector and propagated in <it>E. coli </it>to produce the MBv200m library. Random clones were sequenced by the Sanger method. Sequences were assembled then compared to sequences in GenBank and to other viral metagenomic libraries using BLAST analyses.</p> <p>Results</p> <p>Only 26% of the 881 sequences remaining after assembly had significant (E ≤ 0.001) BLAST hits to sequences in the GenBank nr database, with most being matches to bacteria (15%) and viruses (8%). When BLAST analysis included environmental sequences, 74% of sequences in the MBv200m library had a significant match. Most of these hits (70%) were to microbial metagenome sequences and only 0.7% were to sequences from viral metagenomes. Of the 121 sequences with a significant hit to a known virus, 94% matched bacteriophages (Families <it>Podo</it>-, <it>Sipho</it>-, and <it>Myoviridae</it>) and 6% matched viruses of eukaryotes in the Family <it>Phycodnaviridae </it>(5 sequences) or the Mimivirus (2 sequences). The largest percentages of hits to viral genes of known function were to those involved in DNA modification (25%) or structural genes (17%). Based on reciprocal BLAST analyses, the MBv200m library appeared to be most similar to viral metagenomes from two other bays and least similar to a viral metagenome from the Arctic Ocean.</p> <p>Conclusions</p> <p>Direct cloning of DNA from diverse marine viruses was feasible and resulted in a distribution of virus types and functional genes at depth that differed in detail, but were broadly similar to those found in surface marine waters. Targeted viral analyses are useful for identifying those components of the greater marine metagenome that circulate in the subcellular size fraction.</p

    Genome-wide identification and transcriptional analysis of folate metabolism-related genes in maize kernels

    Get PDF
    BACKGROUND: Maize is a major staple food crop globally and contains various concentrations of vitamins. Folates are essential water-soluble B-vitamins that play an important role as one-carbon (C1) donors and acceptors in organisms. To gain an understanding of folate metabolism in maize, we performed an intensive in silico analysis to screen for genes involved in folate metabolism using publicly available databases, followed by examination of the transcript expression patterns and profiling of the folate derivatives in the kernels of two maize inbred lines. RESULTS: A total of 36 candidate genes corresponding to 16 folate metabolism-related enzymes were identified. The maize genome contains all the enzymes required for folate and C1 metabolism, characterized by highly conserved functional domains across all the other species investigated. Phylogenetic analysis revealed that these enzymes in maize are conserved throughout evolution and have a high level of similarity with those in sorghum and millet. The LC-MS analyses of two maize inbred lines demonstrated that 5-methyltetrahydrofolate was the major form of folate derivative in young seeds, while 5-formyltetrahydrofolate in mature seeds. Most of the genes involved in folate and C1 metabolism exhibited similar transcriptional expression patterns between these two maize lines, with the highest transcript abundance detected on day after pollination (DAP) 6 and the decreased transcript abundance on DAP 12 and 18. Compared with the seeds on DAP 30, 5-methyltetrahydrofolate was decreased and 5-formyltetrahydrofolate was increased sharply in the mature dry seeds. CONCLUSIONS: The enzymes involved in folate and C1 metabolism are conserved between maize and other plant species. Folate and C1 metabolism is active in young developing maize seeds at transcriptional levels

    Brain metastasis development and poor survival associated with carcinoembryonic antigen (CEA) level in advanced non-small cell lung cancer: a prospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central nervous system is a common site of metastasis in NSCLC and confers worse prognosis and quality of life. The aim of this prospective study was to evaluate the prognostic significance of clinical-pathological factors (CPF), serum CEA levels, and EGFR and HER2 tissue-expression in brain metastasis (BM) and overall survival (OS) in patients with advanced NSCLC.</p> <p>Methods</p> <p>In a prospective manner, we studied 293 patients with NSCLC in IIIB-IV clinical stage. They received standard chemotherapy. CEA was measured prior to treatment; EGFR and HER2 were evaluated by immunohistochemistry. BM development was confirmed by MRI in symptomatic patients.</p> <p>Results</p> <p>BM developed in 27, and 32% of patients at 1 and 2 years of diagnosis with adenocarcinoma (RR 5.2; 95% CI, 1.002–29; p = 0.05) and CEA ≥ 40 ng/mL (RR 11.4; 95% CI, 1.7–74; <it>p </it>< 0.01) as independent associated factors. EGFR and HER2 were not statistically significant. Masculine gender (RR 1.4; 95% CI, 1.002–1.9; <it>p </it>= 0.048), poor performance status (RR 1.8; 95% CI, 1.5–2.3; <it>p </it>= 0.002), advanced clinical stage (RR 1.44; 95% CI, 1.02–2; <it>p </it>= 0.04), CEA ≥ 40 ng/mL (RR 1.5; 95% CI, 1.09–2.2; <it>p </it>= 0.014) and EGFR expression (RR 1.6; 95% CI, 1.4–1.9; <it>p </it>= 0.012) were independent associated factors to worse OS.</p> <p>Conclusion</p> <p>High CEA serum level is a risk factor for BM development and is associated with poor prognosis in patients with advanced NSCLC. Surface expression of CEA in tumor cells could be the physiopathological mechanism for invasion to CNS.</p

    Solution Structure and Phylogenetics of Prod1, a Member of the Three-Finger Protein Superfamily Implicated in Salamander Limb Regeneration

    Get PDF
    Prod1 is a cell-surface molecule of the three-finger protein (TFP) superfamily involved in the specification of newt limb PD identity. The TFP superfamily is a highly diverse group of metazoan proteins that includes snake venom toxins, mammalian transmembrane receptors and miscellaneous signaling molecules..The available data suggest that Prod1, and thereby its role in encoding PD identity, is restricted to salamanders. The lack of comparable limb-regenerative capability in other adult vertebrates could be correlated with the absence of the Prod1 gene

    Mutations in APC, CTNNB1 and K-ras genes and expression of hMLH1 in sporadic colorectal carcinomas from the Netherlands Cohort Study

    Get PDF
    BACKGROUND: The early to intermediate stages of the majority of colorectal tumours are thought to be driven by aberrations in the Wnt (APC, CTNNB1) and Ras (K-ras) pathways. A smaller proportion of cancers shows mismatch repair deficiency. The aim of this study was to analyse the co-occurrence of these genetic alterations in relation to tumour and patient characteristics. METHODS: In a group of 656 unselected sporadic colorectal cancer patients, aberrations in the APC, K-ras, CTNNB1 genes, and expression of hMLH1 were investigated. Additionally, tumours were divided in groups based on molecular features and compared with respect to patient's age at diagnosis, sex, family history of colorectal cancer, tumour sub-localisation, Dukes' stage and differentiation. RESULTS: Mutations at the phosphorylation sites (codons 31, 33, 37, and 45) in the CTNNB1 gene were observed in tumours from only 5/464 patients. Tumours with truncating APC mutations and activating K-ras mutations in codons 12 and 13 occurred at similar frequencies (37% (245/656) and 36% (235/656), respectively). Seventeen percent of tumours harboured both an APC and a K-ras mutation (109/656). Nine percent of all tumours (58/656) lacked hMLH1 expression. Patients harbouring a tumour with absent hMLH1 expression were older, more often women, more often had proximal colon tumours that showed poorer differentiation when compared to patients harbouring tumours with an APC and/or K-ras mutation. CONCLUSION: CTNNB1 mutations seem to be of minor importance in sporadic colorectal cancer. The main differences in tumour and patient characteristics are found between groups of patients based on mismatch repair deficiency

    A Comprehensive Resource of Interacting Protein Regions for Refining Human Transcription Factor Networks

    Get PDF
    Large-scale data sets of protein-protein interactions (PPIs) are a valuable resource for mapping and analysis of the topological and dynamic features of interactome networks. The currently available large-scale PPI data sets only contain information on interaction partners. The data presented in this study also include the sequences involved in the interactions (i.e., the interacting regions, IRs) suggested to correspond to functional and structural domains. Here we present the first large-scale IR data set obtained using mRNA display for 50 human transcription factors (TFs), including 12 transcription-related proteins. The core data set (966 IRs; 943 PPIs) displays a verification rate of 70%. Analysis of the IR data set revealed the existence of IRs that interact with multiple partners. Furthermore, these IRs were preferentially associated with intrinsic disorder. This finding supports the hypothesis that intrinsically disordered regions play a major role in the dynamics and diversity of TF networks through their ability to structurally adapt to and bind with multiple partners. Accordingly, this domain-based interaction resource represents an important step in refining protein interactions and networks at the domain level and in associating network analysis with biological structure and function
    corecore