20 research outputs found
Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells
The Notch ligand, Dll4, is essential for angiogenesis during embryonic vascular development and is involved in tumour angiogenesis. Several recent publications demonstrated that blockade of Dll4 signalling inhibits tumour growth, suggesting that it may constitute a good candidate for anti-cancer therapy. In order to understand the role of Dll4 at the cellular level, we performed an analysis of Dll4-regulated genes in HUVECs. The genes identified included several angiogenic signalling pathways, such as VEGF, FGF and HGF. In particular we identified downregulation (VEGFR2, placenta growth factor PlGF) of VEGF pathway components resulting in the overall effect of limiting the response of HUVEC to VEGF. However extensive upregulation of VEGFR1 was observed allowing continued response to its ligand PlGF but the soluble form of the VEGFR1, sVEGFR1 was also upregulated. PlGF enhanced tubulogenesis of HUVEC suggesting that downregulation of PlGF and upregulation of VEGFR1 including sVEGFR1 are important mechanisms by which Dll4 attenuates PlGF and VEGF signalling. Dll4-stimulated HUVECs had impaired ERK activation in response to VEGF and HGF indicating that Dll4 signalling negatively regulates these pathways. Dll4 expression reduced vessel sprout length in a 3D tubulogenesis assay confirming that Dll4 signalling inhibits angiogenesis. Altogether, our data suggest that Dll4 expression acts as a switch from the proliferative phase of angiogenesis to the maturation and stabilisation phase by blocking endothelial cell proliferation and allowing induction of a more mature, differentiated phenotype. The regulation of sVEGFR1 provides a novel mechanism for Dll4 signalling to regulate cells at distance, not just in adjacent cells
Role of Delta-like 4 in Jagged1-induced tumour angiogenesis and tumour growth
Delta-like 4 (DLL4) and Jagged1 (JAG1) are two key Notch ligands implicated in tumour angiogenesis. They were shown to have opposite effects on mouse retinal and adult regenerative angiogenesis. In tumours, both ligands are upregulated but their relative effects and interactions in tumour biology, particularly in tumour response to therapeutic intervention are unclear. Here we demonstrate that DLL4 and JAG1 displayed equal potency in stimulating Notch target genes in HMEC-1 endothelial cells but had opposing effects on sprouting angiogenesis in vitro. Mouse DLL4 or JAG1 expressed in glioblastoma cells decreased tumour cell proliferation in vitro but promoted tumour growth in vivo. mDLL4-expressing tumours showed fewer but larger vessels whereas mJAG1-tumours produced more vessels. In both tumour types pericyte coverage was decreased but the vessels were more perfused. Both ligands increased tumour resistance towards anti-VEGF therapy but the resistance was higher in mDLL4-tumours versus mJAG1-tumours. However, their sensitivity to the therapy was restored by blocking Notch signalling with dibenzazepine. Importantly, anti-DLL4 antibody blocked the effect of JAG1 on tumour growth and increased vessel branching in vivo. The mechanism behind the differential responsiveness was due to a positive feedback loop for DLL4-Notch signalling, rendering DLL4 more dominant in activating Notch signalling in the tumour microenvironment. We concluded that DLL4 and JAG1 promote tumour growth by modulating tumour angiogenesis via different mechanisms. JAG1 is not antagonistic but utilises DLL4 in tumour angiogenesis. The results suggest that anti-JAG1 therapy should be explored in conjunction with anti-DLL4 treatment in developing anti-Notch therapies in clinics
Delta-like 4 Notch Ligand Regulates Tumor Angiogenesis, Improves Tumor Vascular Function, and Promotes Tumor Growth \u3ci\u3eIn vivo\u3c/i\u3e
The vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis. However, clinical trials targeting the VEGF pathway are often ineffective, suggesting that other factors/pathways are also important in tumor angiogenesis. We have previously shown that the Notch ligand Delta-like 4 (DLL4) is up-regulated in tumor vasculature. Here, we show that DLL4, when expressed in tumor cells, functions as a negative regulator of tumor angiogenesis by reducing the number of blood vessels in all five types of xenografts, but acts as a positive driver for tumor growth in two of them (human glioblastoma and prostate cancer). The growth of in vivo models was not related to the effects on growth in vitro. DLL4 expressed in the tumor cells activated Notch signaling in host stromal/endothelial cells, increased blood vessel size, and improved vascular function within tumors. The promotion of tumor growth was, to some extent, due to a reduction of tumor hypoxia and apoptosis. DLL4-expressing tumor cells responded to anti-VEGF therapy with bevacizumab. A soluble form of DLL4 (D4ECD-Fc) blocked tumor growth in both bevacizumab-sensitive and bevacizumab-resistant tumors by disrupting vascular function despite increased tumor vessel density. In addition, we show that DLL4 is up-regulated in tumor cells and tumor endothelial cells of human glioblastoma. Our findings provide a rational basis for the development of novel antiangiogenic strategies via blockade of DLL4/Notch signaling and suggest that combined approaches for interrupting both DLL4 and VEGF pathways may improve antiangiogenic therapy. [Cancer Res 2007;67(23):11244–53
DLL4-Notch Signaling Mediates Tumor Resistance to Anti-VEGF Therapy \u3ci\u3eIn Vivo\u3c/i\u3e
Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a ?-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic. Cancer Res; 71(18); 6073–83. ©2011 AACR
Tipping the Balance: Robustness of Tip Cell Selection, Migration and Fusion in Angiogenesis
Vascular abnormalities contribute to many diseases such as cancer and diabetic retinopathy. In angiogenesis new blood vessels, headed by a migrating tip cell, sprout from pre-existing vessels in response to signals, e.g., vascular endothelial growth factor (VEGF). Tip cells meet and fuse (anastomosis) to form blood-flow supporting loops. Tip cell selection is achieved by Dll4-Notch mediated lateral inhibition resulting, under normal conditions, in an interleaved arrangement of tip and non-migrating stalk cells. Previously, we showed that the increased VEGF levels found in many diseases can cause the delayed negative feedback of lateral inhibition to produce abnormal oscillations of tip/stalk cell fates. Here we describe the development and implementation of a novel physics-based hierarchical agent model, tightly coupled to in vivo data, to explore the system dynamics as perpetual lateral inhibition combines with tip cell migration and fusion. We explore the tipping point between normal and abnormal sprouting as VEGF increases. A novel filopodia-adhesion driven migration mechanism is presented and validated against in vivo data. Due to the unique feature of ongoing lateral inhibition, ‘stabilised’ tip/stalk cell patterns show sensitivity to the formation of new cell-cell junctions during fusion: we predict cell fates can reverse. The fusing tip cells become inhibited and neighbouring stalk cells flip fate, recursively providing new tip cells. Junction size emerges as a key factor in establishing a stable tip/stalk pattern. Cell-cell junctions elongate as tip cells migrate, which is shown to provide positive feedback to lateral inhibition, causing it to be more susceptible to pathological oscillations. Importantly, down-regulation of the migratory pathway alone is shown to be sufficient to rescue the sprouting system from oscillation and restore stability. Thus we suggest the use of migration inhibitors as therapeutic agents for vascular normalisation in cancer
Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery
Murine syngeneic tumor models are critical to novel immuno-based therapy development, but the molecular and immunologic features of these models are still not clearly defined. The translational relevance of differences between the models is not fully understood, impeding appropriate preclinical model selection for target validation, and ultimately hindering drug development. Across a panel of commonly used murine syngeneic tumor models, we showed variable responsiveness to immunotherapies. We used array comparative genomic hybridization, whole-exome sequencing, exon microarray analysis, and flow cytometry to extensively characterize these models, which revealed striking differences that may underlie these contrasting response profiles. We identified strong differential gene expression in immune-related pathways and changes in immune cell-specific genes that suggested differences in tumor immune infiltrates between models. Further investigation using flow cytometry showed differences in both the composition and magnitude of the tumor immune infiltrates, identifying models that harbor "inflamed" and "noninflamed" tumor immune infiltrate phenotypes. We also found that immunosuppressive cell types predominated in syngeneic mouse tumor models that did not respond to immune-checkpoint blockade, whereas cytotoxic effector immune cells were enriched in responsive models. A cytotoxic cell-rich tumor immune infiltrate has been correlated with increased efficacy of immunotherapies in the clinic, and these differences could underlie the varying response profiles to immunotherapy between the syngeneic models. This characterization highlighted the importance of extensive profiling and will enable investigators to select appropriate models to interrogate the activity of immunotherapies as well as combinations with targeted therapies in vivo
CD34 marks angiogenic tip cells in human vascular endothelial cell cultures
The functional shift of quiescent endothelial cells into tip cells that migrate and stalk cells that proliferate is a key event during sprouting angiogenesis. We previously showed that the sialomucin CD34 is expressed in a small subset of cultured endothelial cells and that these cells extend filopodia: a hallmark of tip cells in vivo. In the present study, we characterized endothelial cells expressing CD34 in endothelial monolayers in vitro. We found that CD34-positive human umbilical vein endothelial cells show low proliferation activity and increased mRNA expression of all known tip cell markers, as compared to CD34-negative cells. Genome-wide mRNA profiling analysis of CD34-positive endothelial cells demonstrated enrichment for biological functions related to angiogenesis and migration, whereas CD34-negative cells were enriched for functions related to proliferation. In addition, we found an increase or decrease of CD34-positive cells in vitro upon exposure to stimuli that enhance or limit the number of tip cells in vivo, respectively. Our findings suggest cells with virtually all known properties of tip cells are present in vascular endothelial cell cultures and that they can be isolated based on expression of CD34. This novel strategy may open alternative avenues for future studies of molecular processes and functions in tip cells in angiogenesis
AECHL-1, a novel triterpenoid, targets tumor neo-vasculature and impairs the endothelial cell cytoskeleton
Role of Delta-like 4 in Jagged1-induced tumour angiogenesis and tumour growth
Delta-like 4 (DLL4) and Jagged1 (JAG1) are two key Notch ligands implicated in tumour angiogenesis. They were shown to have opposite effects on mouse retinal and adult regenerative angiogenesis. In tumours, both ligands are upregulated but their relative effects and interactions in tumour biology, particularly in tumour response to therapeutic intervention are unclear. Here we demonstrate that DLL4 and JAG1 displayed equal potency in stimulating Notch target genes in HMEC-1 endothelial cells but had opposing effects on sprouting angiogenesis in vitro. Mouse DLL4 or JAG1 expressed in glioblastoma cells decreased tumour cell proliferation in vitro but promoted tumour growth in vivo. mDLL4-expressing tumours showed fewer but larger vessels whereas mJAG1-tumours produced more vessels. In both tumour types pericyte coverage was decreased but the vessels were more perfused. Both ligands increased tumour resistance towards anti-VEGF therapy but the resistance was higher in mDLL4-tumours versus mJAG1-tumours. However, their sensitivity to the therapy was restored by blocking Notch signalling with dibenzazepine. Importantly, anti-DLL4 antibody blocked the effect of JAG1 on tumour growth and increased vessel branching in vivo. The mechanism behind the differential responsiveness was due to a positive feedback loop for DLL4-Notch signalling, rendering DLL4 more dominant in activating Notch signalling in the tumour microenvironment. We concluded that DLL4 and JAG1 promote tumour growth by modulating tumour angiogenesis via different mechanisms. JAG1 is not antagonistic but utilises DLL4 in tumour angiogenesis. The results suggest that anti-JAG1 therapy should be explored in conjunction with anti-DLL4 treatment in developing anti-Notch therapies in clinics
