6,260 research outputs found

    Keyword-Based Delegable Proofs of Storage

    Full text link
    Cloud users (clients) with limited storage capacity at their end can outsource bulk data to the cloud storage server. A client can later access her data by downloading the required data files. However, a large fraction of the data files the client outsources to the server is often archival in nature that the client uses for backup purposes and accesses less frequently. An untrusted server can thus delete some of these archival data files in order to save some space (and allocate the same to other clients) without being detected by the client (data owner). Proofs of storage enable the client to audit her data files uploaded to the server in order to ensure the integrity of those files. In this work, we introduce one type of (selective) proofs of storage that we call keyword-based delegable proofs of storage, where the client wants to audit all her data files containing a specific keyword (e.g., "important"). Moreover, it satisfies the notion of public verifiability where the client can delegate the auditing task to a third-party auditor who audits the set of files corresponding to the keyword on behalf of the client. We formally define the security of a keyword-based delegable proof-of-storage protocol. We construct such a protocol based on an existing proof-of-storage scheme and analyze the security of our protocol. We argue that the techniques we use can be applied atop any existing publicly verifiable proof-of-storage scheme for static data. Finally, we discuss the efficiency of our construction.Comment: A preliminary version of this work has been published in International Conference on Information Security Practice and Experience (ISPEC 2018

    Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B

    Get PDF
    BACKGROUND: Entecavir is a potent and selective antiviral agent that has demonstrated efficacy in phase 2 studies in patients with hepatitis B e antigen (HBeAg)-negative chronic hepatitis B. METHODS: In this phase 3, double-blind trial, we randomly assigned 648 patients with HBeAg-negative chronic hepatitis B who had not previously been treated with a nucleoside analogue to receive 0.5 mg of entecavir or 100 mg of lamivudine once daily for a minimum of 52 weeks. The primary efficacy end point was histologic improvement (a decrease by at least two points in the Knodell necroinflammatory score, without worsening of fibrosis). RESULTS: Histologic improvement after 48 weeks of treatment occurred in 208 of 296 patients in the entecavir group who had adequate baseline liver-biopsy specimens that could be evaluated (70 percent), as compared with 174 of 287 such patients in the lamivudine group (61 percent, P=0.01). More patients in the entecavir group than in the lamivudine group had undetectable serum hepatitis B virus (HBV) DNA levels according to a polymerase-chain- reaction assay (90 percent vs. 72 percent, P<0.001) and normalization of alanine aminotransferase levels (78 percent vs. 71 percent, P = 0.045). The mean reduction in serum HBV DNA levels from baseline to week 48 was greater with entecavir than with lamivudine (5.0 vs. 4.5 log [on a base-10 scale] copies per milliliter, P<0.001). There was no evidence of resistance to entecavir. Safety and adverse-event profiles were similar in the two groups. CONCLUSIONS: Among patients with HBeAg-negative chronic hepatitis B who had not previously been treated with a nucleoside analogue, the rates of histologic improvement, virologic response, and normalization of alanine aminotransferase levels were significantly higher at 48 weeks with entecavir than with lamivudine. The safety profile of the two agents was similar, and there was no evidence of viral resistance to entecavir. Copyright © 2006 Massachusetts Medical Society.published_or_final_versio

    Measuring vertebrate telomeres: applications and limitations

    Get PDF
    Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic chromosomes that function in stabilizing chromosomal end integrity. In vivo studies of somatic tissue of mammals and birds have shown a correlation between telomere length and organismal age within species, and correlations between telomere shortening rate and lifespan among species. This result presents the tantalizing possibility that telomere length could be used to provide much needed information on age, ageing and survival in natural populations where longitudinal studies are lacking. Here we review methods available for measuring telomere length and discuss the potential uses and limitations of telomeres as age and ageing estimators in the fields of vertebrate ecology, evolution and conservation

    Sensory Measurements: Coordination and Standardization

    Get PDF
    Do sensory measurements deserve the label of “measurement”? We argue that they do. They fit with an epistemological view of measurement held in current philosophy of science, and they face the same kinds of epistemological challenges as physical measurements do: the problem of coordination and the problem of standardization. These problems are addressed through the process of “epistemic iteration,” for all measurements. We also argue for distinguishing the problem of standardization from the problem of coordination. To exemplify our claims, we draw on olfactory performance tests, especially studies linking olfactory decline to neurodegenerative disorders

    Entanglement Entropy of 3-d Conformal Gauge Theories with Many Flavors

    Get PDF
    Three-dimensional conformal field theories (CFTs) of deconfined gauge fields coupled to gapless flavors of fermionic and bosonic matter describe quantum critical points of condensed matter systems in two spatial dimensions. An important characteristic of these CFTs is the finite part of the entanglement entropy across a circle. The negative of this quantity is equal to the finite part of the free energy of the Euclidean CFT on the three-sphere, and it has been proposed to satisfy the so called F-theorem, which states that it decreases under RG flow and is stationary at RG fixed points. We calculate the three-sphere free energy of non-supersymmetric gauge theory with a large number N_F of bosonic and/or fermionic flavors to the first subleading order in 1/N_F. We also calculate the exact free energies of the analogous chiral and non-chiral {\cal N} = 2 supersymmetric theories using localization, and find agreement with the 1/N_F expansion. We analyze some RG flows of supersymmetric theories, providing further evidence for the F-theorem.Comment: 31 pages, 2 figures; v2 refs added, minor change

    Rectification of electronic heat current by a hybrid thermal diode

    Full text link
    We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superconducting island. Electronic heat current asymmetry in the structure arises from large mismatch between the thermal properties of these two. We demonstrate experimentally temperature differences exceeding 6060 mK between the forward and reverse thermal bias configurations. Our device offers a remarkably large heat rectification ratio up to 140\sim 140 and allows its prompt implementation in true solid-state thermal nanocircuits and general-purpose electronic applications requiring energy harvesting or thermal management and isolation at the nanoscale.Comment: 8 pages, 6 color figure

    Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)

    Get PDF
    A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation

    The Regge Limit for Green Functions in Conformal Field Theory

    Full text link
    We define a Regge limit for off-shell Green functions in quantum field theory, and study it in the particular case of conformal field theories (CFT). Our limit differs from that defined in arXiv:0801.3002, the latter being only a particular corner of the Regge regime. By studying the limit for free CFTs, we are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak coupling. The dominance of Feynman graphs where only two high momentum lines are exchanged in the t-channel, follows simply from the free field analysis. We can then define the BFKL kernel in terms of the two point function of a simple light-like bilocal operator. We also include a brief discussion of the gravity dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit defined here and previous work in CFT. Clarification of causal orderings in the limit. References adde

    Light States in Chern-Simons Theory Coupled to Fundamental Matter

    Full text link
    Motivated by developments in vectorlike holography, we study SU(N) Chern-Simons theory coupled to matter fields in the fundamental representation on various spatial manifolds. On the spatial torus T^2, we find light states at small `t Hooft coupling \lambda=N/k, where k is the Chern-Simons level, taken to be large. In the free scalar theory the gaps are of order \sqrt {\lambda}/N and in the critical scalar theory and the free fermion theory they are of order \lambda/N. The entropy of these states grows like N Log(k). We briefly consider spatial surfaces of higher genus. Based on results from pure Chern-Simons theory, it appears that there are light states with entropy that grows even faster, like N^2 Log(k). This is consistent with the log of the partition function on the three sphere S^3, which also behaves like N^2 Log(k). These light states require bulk dynamics beyond standard Vasiliev higher spin gravity to explain them.Comment: 58 pages, LaTeX, no figures, Minor error corrected, references added, The main results of the paper have not change

    On the coset duals of extended higher spin theories

    Full text link
    We study the holographic duality between the M x M matrix extension of Vasiliev higher spin theories on AdS3 and the large N limit of SU(N+M)/SU(N) x U(1) type cosets. We present a simplified proof for the agreement of the spectra and clarify the relation between this duality and the version in which the cosets are replaced by Kazama-Suzuki models of Grassmannian type.Comment: 27 pages, 1 tabl
    corecore