17 research outputs found
Effects of host switching on gypsy moth ( Lymantria dispar (L.)) under field conditions
Effects of various single and two species diets on the performance of gypsy moth ( Lymantria dispar (L.)) were studied when this insect was reared from hatch to population on intact host trees in the field. The tree species used for this study were red oak ( Quercus rubra L.), white oak (Q. alba L.), bigtooth aspen ( Populus grandidentata Michaux), and trembling aspen ( P. tremuloides Michaux). These are commonly available host trees in the Lake States region. The study spanned two years and was performed at two different field sites in central Michigan. Conclusions drawn from this study include: (1) Large differences in gypsy moth growth and survival can occur even among diet sequences composed of favorable host species. (2) Larvae that spent their first two weeks feeding on red oak performed better during this time period than larvae on all other host species in terms of mean weight, mean relative growth rate (RGR), and mean level of larval development, while larvae on a first host of bigtooth aspen were ranked lowest in terms of mean weight, RGR, and level of larval development. (3) Combination diets do not seem to be inherently better or worse than diets composed of only a single species; rather, insect performance was affected by the types of host species eaten and the time during larval development that these host species were consumed instead of whether larvae ate single species diets or mixed species diets. (4) In diets composed of two host species, measures of gypsy moth performance are affected to different extents in the latter part of the season by the two different hosts; larval weights and development rates show continued effects of the first host fed upon while RGRs, mortality, and pupal weights are affected strongly by the second host type eaten. (5) Of the diets investigated in this study, early feeding on red oak followed by later feeding on an aspen, particularly trembling aspen, is most beneficial to insects in terms of attaining high levels of performance throughout their lives.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47802/1/442_2004_Article_BF00323144.pd
Temporal dynamics of the mimetic allele frequency at the doublesex locus, which controls polymorphic Batesian mimicry in Papilio memnon butterflies
Abstract Tracking allele frequencies is essential for understanding how polymorphisms of adaptive traits are maintained. In Papilio memnon butterflies, which exhibit a female-limited Batesian mimicry polymorphism (wing-pattern polymorphism), two alleles at the doublesex (dsx) locus correspond to mimetic and non-mimetic forms in females; males carry both dsx alleles but display only the non-mimetic form. This polymorphism is thought to be maintained by a negative frequency-dependent selection. By tracking dsx allele frequencies in both sexes at a Taiwanese site over four years, we found that the mimetic allele persists at intermediate frequencies even when the unpalatable model papilionid butterflies (Pachliopta and Atrophaneura species) were very rare or absent. The rates of male mate choice did not differ between the two female forms; neither did insemination number nor age composition, suggesting equivalent reproductive performance of the two forms over time. Our results characterised the temporal dynamics of the mimetic allele frequency in the field for the first time and give insights into underlying processes involved in the persistence of the female-limited Batesian mimicry polymorphism
Cascading effects of moose (Alces alces) management on birds
Large herbivores often have key functions in their ecosystems, and may change ecosystem processes with cascading effects on other animals. The mechanisms often involve relocations of resources of various kinds, including reduction in resource availability following large herbivore foraging and increase in resources from animal excreta. As large herbivore populations in Europe generally are intensely managed, management activities may interact with the activities of the herbivores themselves in the effect on other ecosystem components. We investigated the effects of moose (Alces alces) winter browsing, together with the effect of net nutrient input via supplementary winter feeding of moose on functional composition and species richness of birds in a boreal forest. Supplementary feeding stations for moose had a net zero effect on bird species richness and abundance, because negative effects of moose browsing were balanced by positive effects of nutrient input. Sites with a similar browsing intensity as at feeding stations but without nutrient input had lower abundance and species richness than feeding stations. Functional groups of bird species showed differing responses: Birds nesting at or below browsing height were negatively affected by moose browsing, whereas species nesting above the browsing zone were positively affected by moose browsing. Insect eating species responded negatively to moose browsing on birch but positively to nutrient input at feeding stations, whereas seed eating species responded positively to birch browsing and negatively to feeding stations. This study showed that both high levels of cervid activity and human management interventions influenced the bird community
