18 research outputs found

    Earthquake nucleation in intact or healed rocks

    Get PDF
    Earthquakes are generated because faults lose strength with increasing slip and slip rate. Among the simplest representations of slip-dependent strength is the linear slip-weakening model, characterized by a linear drop to a residual friction. However, healed fault rocks often exhibit some slip strengthening before the onset of weakening. Here we investigate the effect of such a slip-hardening phase on the initial growth of a slip patch and on the nucleation of rupture instabilities. We assume a piecewise linear strength versus slip constitutive relation. We compute stress and slip distributions for in-plane or antiplane rupture configurations in response to an increasing, locally peaked (parabolic with curvature κ) stress profile. In contrast with the strictly linear slip-weakening case, our calculations show that the curvature of the loading profile and the level of background stress strongly influence the nucleation size. Even for small amounts of slip hardening, we find that the critical nucleation size scales with inline image for κ[RIGHTWARDS ARROW]0, i.e., crack growth remains stable up to very large crack sizes for sufficiently smooth loading profiles. Likewise, when the background stress τb is very close to the initial strength τc, the critical crack size scales with inline image. An eigenvalue analysis shows that the nucleation length increases as the proportion of the crack undergoing slip hardening increases, irrespective of the details of the loading profile. Overall, our results indicate that earthquake nucleation sizes can significantly increase due to slip hardening (e.g., in healed fault rocks), especially when the background loading is smooth

    Modeling Slope Instability as Shear Rupture Propagation in a Saturated Porous Medium

    Get PDF
    When a region of intense shear in a slope is much thinner than other relevant geometric lengths, this shear failure may be approximated as localized slip, as in faulting, with strength determined by frictional properties of the sediment and effective stress normal to the failure surface. Peak and residual frictional strengths of submarine sediments indicate critical slope angles well above those of most submarine slopes—in contradiction to abundant failures. Because deformation of sediments is governed by effective stress, processes affecting pore pressures are a means of strength reduction. However, common methods of exami ning slope stability neglect dynamically variable pore pressure during failure. We examine elastic-plastic models of the capped Drucker-Prager type and derive approximate equations governing pore pressure about a slip surface when the adjacent material may deform plastically. In the process we identify an elastic-plastic hydraulic diffusivity with an evolving permeability and plastic storage term analogous to the elastic term of traditional poroelasticity. We also examine their application to a dynamically propagating subsurface rupture and find indications of downslope directivity.Earth and Planetary SciencesEngineering and Applied Science

    Coseismic fault lubrication by viscous deformation

    Get PDF
    Despite the hazard posed by earthquakes, we still lack fundamental understanding of the processes that control fault lubrication behind a propagating rupture front and enhance ground acceleration. Laboratory experiments show that fault materials dramatically weaken when sheared at seismic velocities (>0.1 m s−1). Several mechanisms, triggered by shear heating, have been proposed to explain the coseismic weakening of faults, but none of these mechanisms can account for experimental and seismological evidence of weakening. Here we show that, in laboratory experiments, weakening correlates with local temperatures attained during seismic slip in simulated faults for diverse rock-forming minerals. The fault strength evolves according to a simple, material-dependent Arrhenius-type law. Microstructures support this observation by showing the development of a principal slip zone with textures typical of sub-solidus viscous flow. We show evidence that viscous deformation (at either sub- or super-solidus temperatures) is an important, widespread and quantifiable coseismic lubrication process. The operation of these highly effective fault lubrication processes means that more energy is then available for rupture propagation and the radiation of hazardous seismic waves

    Non-occlusive Mesenteric Ischemia as a Fatal Complication in Acute Pancreatitis: A Case Series.

    No full text
    Vascular complications of severe acute pancreatitis are well known and largely described unlike non-occlusive mesenteric ischemia, which is a rare and potentially fatal complication. Non-occlusive mesenteric ischemia is an acute mesenteric ischemia without thrombotic occlusion of blood vessels, poorly described as a complication of acute pancreatitis.info:eu-repo/semantics/publishe
    corecore