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Abstract Earthquakes are generated because faults lose strength with increasing slip and slip rate.
Among the simplest representations of slip-dependent strength is the linear slip-weakening model,
characterized by a linear drop to a residual friction. However, healed fault rocks often exhibit some slip
strengthening before the onset of weakening. Here we investigate the effect of such a slip-hardening phase
on the initial growth of a slip patch and on the nucleation of rupture instabilities. We assume a piecewise
linear strength versus slip constitutive relation. We compute stress and slip distributions for in-plane or
antiplane rupture configurations in response to an increasing, locally peaked (parabolic with curvature
𝜅) stress profile. In contrast with the strictly linear slip-weakening case, our calculations show that the
curvature of the loading profile and the level of background stress strongly influence the nucleation size.
Even for small amounts of slip hardening, we find that the critical nucleation size scales with 1∕

√
𝜅 for

𝜅 → 0, i.e., crack growth remains stable up to very large crack sizes for sufficiently smooth loading profiles.
Likewise, when the background stress 𝜏b is very close to the initial strength 𝜏c, the critical crack size scales
with 1∕

√
𝜏c − 𝜏b. An eigenvalue analysis shows that the nucleation length increases as the proportion of

the crack undergoing slip hardening increases, irrespective of the details of the loading profile. Overall, our
results indicate that earthquake nucleation sizes can significantly increase due to slip hardening (e.g., in
healed fault rocks), especially when the background loading is smooth.

1. Introduction

Within the Earth’s brittle crust, deformation is localized along narrow shear faults. Slip along faults can
be slow and stable but is very sudden and dynamic during earthquakes. Laboratory experiments [e.g.,
Ohnaka and Shen, 1999; Ohnaka, 2000] and theoretical analyses [e.g., Campillo and Ionescu, 1997; Rubin and
Ampuero, 2005; Ampuero and Rubin, 2008] have shown that periods of stable slip occur over some area along
the fault immediately prior to dynamic slip, showing the existence of a nucleation phase of earthquake
rupture. Of critical practical importance are the physical dimensions of the nucleation zone and how they
depend on the constitutive friction law and the loading configuration. In this paper, we focus our attention
to earthquake nucleation along faults which are initially healed and locked.

At the kilometer scale, faults can be viewed as interfaces across which displacement discontinuities
accumulate. However, faults are not atomically sharp planes and have a finite thickness, which may range
from a few millimeters for the ultracataclasite core [Chester and Chester, 1998; Chester et al., 2005], up to
several hundred meters for the damage zone surrounding the core [e.g., Sibson, 2003]. Hence, “slip” on a
fault should in fact be viewed as an integrated strain across the fault core.

Under subsurface conditions (typically 1 to 4 km depth), fault cores generally consist of an incohesive,
granular gouge; at greater depths within the seismogenic zone (down to 10 to 15 km), fault rocks tend to
be cohesive and form cemented cataclasites and/or mylonites [e.g., Sibson, 1977]. Along seismic faults, crack
damage, grain comminution and disaggregation are generated during earthquakes, due to the very large
strain and strain rate involved in the fault core. During the interseismic phase, as well as during periods
when the fault is not active, the circulation of chemically active fluids, such as water, induces cementation
of the fault core, especially under midcrustal conditions where the ambient temperature and pressures are
relatively high (of the order of several hundred degrees Celsius and tens to a hundred of megapascals) [e.g.,
Tenthorey and Cox, 2006; Faulkner et al., 2008; Smith et al., 2013]. The cementation of fault rocks corresponds
to microcrack healing and mineralization of pore space and open cracks [e.g., Smith et al., 2013]; cemented
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Figure 1. (a) Friction coefficient as a function of slip for quartz gouges deformed at 636◦C. The healed gouge was held at
636◦C for 104 s prior to deformation. Note that the peak stress is always preceded by some inelastic hardening. The red
straight line corresponds to the elastic part of the slip displacement. Redrawn from Karner et al. [1997]. (b) Shear stress
as a function of inelastic slip displacement for intact Tsukuba granite deformed at 392 MPa effective pressure. Redrawn
from Ohnaka et al. [1997].

fault rocks are thus expected to have regained cohesion (in contrast with granular fault gouges), and
should have qualitatively similar mechanical properties to intact rocks [e.g., Griffith et al., 2012]. Indeed, rock
deformation experiment show that precompacted and healed fractures or sliding surfaces regain strength
with time and that they exhibit a similar stress-strain behavior to intact rocks, which includes elastic loading,
inelastic hardening, peak stress, and subsequent strength drop [e.g., Karner et al., 1997; Nakatani and Scholz,
2004; Tenthorey and Cox, 2006] (see Figure 1). In cohesive brittle materials such as rocks, the initial stage
of inelastic strain hardening originates from the growth of a network of tensile microcracks that gradually
become connected to form a continuous shear fracture, whereas the postpeak behavior is generally
understood as pure frictional sliding on the fracture [Paterson and Wong, 2005].

Hence, slip on a cemented fault requires refracturing of the fault core and the overall shear strength of the
fault is expected to initially increase with increasing slip (i.e., integrated strain across the fault core) before
reaching a peak, and then to decrease. The apparent frictional behavior is thus slip hardening and then
slip weakening.

The hardening which precedes the peak stress has often been neglected in friction studies, and only
the remaining postpeak slip-weakening behavior is generally accounted for in representations of a
rate-independent fault shear strength [e.g., Palmer and Rice, 1973; Uenishi and Rice, 2003]. As shown by
Uenishi and Rice [2003], a remarkable aspect of linear slip-weakening laws is that the earthquake nucleation
size, i.e., the critical size of the slip patch beyond which slip becomes dynamic, is a sole function of the shear
modulus of the rock and the linear weakening rate of the shear strength and does not depend upon the
loading configuration and shape.

The purpose of the present work is to study earthquake nucleation along healed faults, by investigating
the effect of a nonnegligible hardening phase prior to peak stress (as exemplified in Figure 1) within
a slip-dependent constitutive friction law. Our rheological model is qualitatively similar to that of
Stuart [1979], Stuart and Mavko [1979], and Cao and Aki [1984], who studied earthquake generation with a
fault zone rheology that included an initial hardening phase; however, these authors did not study explicitly
earthquake nucleation size, and a systematic comparison between results from pure slip weakening
and a rheology incorporating some slip hardening remains to be performed. Within the framework of
slip-hardening/weakening strength evolution, we investigate the effect of the loading profile on the critical
crack size corresponding to the nucleation of a dynamic rupture instability.
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Figure 2. Constitutive relation for shear strength as a function
of slip. Slip starts at 𝜏c, followed by linear hardening up to 𝜏p,
achieved at the critical slip distance 𝛿p, and then the behavior is
linear slip weakening down to a residual strength 𝜏r, associated
with a weakening distance 𝛿c.

2. Governing Equations for
Quasi-Static Crack Growth
2.1. Constitutive Law for Frictional Slip
Experimental observations indicate that
some slip hardening often occur prior to
peak stress. In general, the strength of
the fault (i.e., the integrated strength of
the rocks composing the fault core; see,
for instance, Ohnaka et al. [1997]) should
be described by the functional form that
best reflects the deformation processes
leading to the observed slip hardening and
the subsequent slip weakening. Here we want
to (1) minimize the number of parameters
required to describe the strength evolution,
and (2) use a functional form that can easily
be related to the widely used linear
slip-weakening law. Hence, we adopt a
phenomenological piecewise linear strength
versus slip relation:

𝜏(𝛿) =
⎧⎪⎨⎪⎩
𝜏c + h𝛿 for 0 ≤ 𝛿 < 𝛿p,

𝜏p − w(𝛿 − 𝛿p) for 𝛿p ≤ 𝛿 < 𝛿p + 𝛿c,

𝜏r for 𝛿p + 𝛿c ≤ 𝛿.

, (1)

Where 𝜏(𝛿) is the slip-dependent shear strength, 𝜏p is the peak stress, 𝜏c is the stress at the onset of slip
(named after the classic notation C’ defined by Brace et al. [1966] for the onset of inelastic strain), 𝜏r is the
residual strength, 𝛿c is the critical slip weakening distance, and 𝛿p is the critical slip-strengthening distance
(i.e., the slip at peak stress). The hardening (h) and weakening (w) slopes are as follows:

h = (𝜏p − 𝜏c)∕𝛿p and w = (𝜏p − 𝜏r)∕𝛿c. (2)

The constitutive law is plotted in Figure 2. It reproduces the essential features observed experimentally
(hardening followed by weakening) while minimizing the number of additional parameters. In addition,
after the peak strength is reached, the weakening is linear (with residual) and we retrieve the conventionally
used slip-weakening law for further increases in slip.

A set of representative parameter values for the model can be determined from experimental data obtained
on intact rocks. Experimental data from Ohnaka et al. [1997] for the fracture of intact granite under a range
of physical conditions are summarized in Table 1. We calculated representative values for the hardening rate
h and the weakening rate w from the data provided by Ohnaka et al. [1997, Table 1], by approximating the
hardening and weakening phases by linear variations from the onset of slip to the peak and from the peak
to residual strength, respectively. This procedure yields values of the order of 0.1 for the slope ratio w∕h.
The slip-weakening distance is generally of the order of a few millimeters, and the ratio of weakening to
hardening distances 𝛿c∕𝛿p ranges from 3 to 8.

2.2. Geometry and Static Equilibrium
We consider a finite crack embedded in an isotropic elastic medium, which is progressively loaded as a
function of time. The shear stress 𝜏 at a position x along the crack line is given by [Bilby and Eshelby, 1968]

𝜏(x, t) = 𝜏b + q(x, t) + 𝜇∗

2𝜋 ∫
a+

a−

𝜕𝛿∕𝜕𝜉
𝜉 − x

d𝜉, (3)

where a− and a+ are the left and right positions of the crack tips, respectively, The parameter 𝜏b is a uniform
background stress, q(x, t) is an arbitrary loading profile superimposed to 𝜏b, 𝜇∗ is equal to the shear modulus
𝜇 of the surrounding medium in mode III and 𝜇∗ = 𝜇∕(1 − 𝜈) (𝜈 being Poisson’s ratio) in modes I and II,
and 𝛿(x) is the slip along the crack. Equation (3) corresponds to the stress distribution along a static crack
at equilibrium.
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Table 1. Examples of Parameter Values for Initially Intact Tsukuba Granite;
Extracted From Ohnaka et al. [1997]

Effective
Pressure Temp. Strain Rate h w
(MPa) (◦C) (/s) (MPa/mm) (MPa/mm) 𝛿c∕𝛿p w∕h

471 456 1.5 ⋅ 10−4 335.8 22.6 8.1 0.07
392 25 7 ⋅ 10−6 964.5 169.8 3.7 0.18
470 450 10−5 292.0 56.9 5.7 0.19
451 305 10−5 486.8 98.3 2.8 0.20
180 25 10−5 989.5 167.1 5.1 0.17
180 450 10−5 416.6 34.1 7.1 0.08
180 300 10−5 329.0 119.8 8.2 0.36
180 25 10−6 1130.4 157.5 3.1 0.14
180 25 10−7 195.7 99.3 3.9 0.51
253 355 10−6 470.0 42.1 3.8 0.09

Throughout this paper we use the following particular loading shape (similar to that used by Uenishi and
Rice [2003]):

q(x, t) = max{0, Rt − 𝜅x2∕2}, (4)

which provides a locally peaked profile parameterized by 𝜅, which is a measure of the broadness of the
loading and a loading rate R (t is the time). The loading profile is a rising parabola, symmetric with respect
to x = 0. Because of this symmetry, the crack will also be symmetric with respect to x = 0, and we have
a+ = −a− ≡ a. The use of a locally peaked loading profile such as (4) allows us to investigate the effect of
stress heterogeneities on earthquake nucleation with a simple parameterization.

Figure 3. (a) Initial stress state (at t=0) as a function of
position x. Dotted red lines indicate previous instant (t<0).
At t=0, the point x=0 is just about to slip, as the imposed
stress has just reached the strength 𝜏c. (b) The thick black
line indicates the slipping region, which is here in the
hardening phase. (c) The central part of the crack is now
in the weakening phase, while near the tips the fault
remains hardening.

For convenience, we choose a reference time
frame such that at t = 0, the imposed stress has
just reached the fault strength at the point x = 0,
i.e., 𝜏b + q(0, 0) = 𝜏c at t = 0. This initial stress
state is shown graphically in Figure 3a.

Hence, we can rewrite the equation for elastic
equilibrium as

𝜏(x) − 𝜏c = max{𝜏b − 𝜏c, Rt − 𝜅x2∕2}

+ 𝜇∗

2𝜋 ∫
a

−a

𝜕𝛿∕𝜕𝜉
𝜉 − x

d𝜉. (5)

3. Nucleation for Parabolic Loading

The procedure used to determine dynamic
nucleation crack sizes follows that of Uenishi
and Rice [2003]. The shear load is progressively
increased (t increases), and for each step in t we
calculate the slip distribution along the crack
and the crack size a. The calculation procedure
is given in Appendix A. Initially, as t increases,
the crack size increases as well: this corresponds
to a stable situation, since new equilibrium
configuration can be determined at each
step (see Figures 3b and 3c). However, we
expect to reach values of t and a above which
any load increment produces an unbounded
crack growth: this is where dynamic crack
growth occurs.

In the case of strictly linear slip weakening before
residual friction is engaged, Dascalu et al. [2000]
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and Uenishi and Rice [2003] have demonstrated that the critical crack size at nucleation ac is

ac = asw
c ≈ 0.579aw, (6)

where aw=𝜇∗∕w. Remarkably, asw
c does not depend upon the loading profile. Here we investigate how the

introduction of a linear-hardening regime preceding the linear slip-weakening phase modifies the value of
ac and its dependence upon the shape of the loading profile.

3.1. Small Slip Solutions, 𝜹 < 𝜹p + 𝜹c

We first focus on the situations where nucleation occurs before a fully developed cohesive zone is
established, i.e., for 𝛿max ≤ 𝛿p + 𝛿c. In such cases, the residual stress is not reached at any point during the
quasi-static fault growth, and hence, it does not influence the nucleation process. If we normalize slip by the
hardening slip distance 𝛿p, and stress by (𝜏p − 𝜏c), the constitutive law becomes

(𝜏 − 𝜏c)∕(𝜏p − 𝜏c) =
{
𝛿∕𝛿p if 𝛿∕𝛿p < 1,
1 − (w∕h)(𝛿∕𝛿p − 1) else,

(7)

where we note that the only independent parameter is now the slope ratio w∕h. The elastostatic equilibrium
equation (5) can be rewritten in terms of the normalized slip 𝛿∕𝛿p, stress (𝜏−𝜏c)∕(𝜏p−𝜏c) and distance x∕a as

𝜏(x∕a) − 𝜏c

𝜏p − 𝜏c
= max

{
𝜏b − 𝜏c

𝜏p − 𝜏c
,

Rt
𝜏p − 𝜏c

−
a2𝜅(x∕a)2

2(𝜏p − 𝜏c)

}
+

ah∕a

2𝜋 ∫
1

−1

𝜕(𝛿∕𝛿p)∕𝜕𝜉
𝜉 − (x∕a)

d𝜉, (8)

where

ah = 𝜇∗

h
= (w∕h)aw (9)

is an alternative characteristic crack length. We define a normalized curvature as

K =
𝜅a2

w

𝜏p − 𝜏c
. (10)

We first investigate the cases for which the background stress is low enough so that (𝜏b − 𝜏c)∕(𝜏p − 𝜏c)
is always below the imposed parabolic loading profile (i.e., the background stress ). Figure 4 shows the
solutions for load Rt∕(𝜏p − 𝜏c) and crack size a∕aw with increasing maximum slip 𝛿max at the crack center for
various slope ratios w∕h and curvatures K . In all cases, there is a peak load (marked by a filled circle) above
which no static solution exists. The corresponding crack size is the critical nucleation size ac.

Keeping the curvature constant (K = 10), we observe (Figure 4a) that the nucleation size increases modestly
with increasing values of w∕h, from around 0.64aw ≈ 1.10asw

c at w∕h = 0.01 up to 1.50aw ≈ 2.59asw
c at

w∕h = 10. Concomitantly, the maximum slip (at the crack center) at the nucleation point increases from
𝛿max ≈ 1.05𝛿p up to 𝛿max ≈ 111.4𝛿p (Figure 4c). Of course, the critical size is reached for 𝛿max > 𝛿p, since
the centermost part of the fault needs to be in the weakening regime for the crack to grow unstably. For
w∕h = 10, the value of the maximum slip (𝛿max ≈ 111.4𝛿p) is much larger than the typical values beyond
which the residual strength is engaged (recalling that 𝛿c∕𝛿p ranges from 3 to 9 for granite); the solution
given here under the small slip assumption (i.e., residual strength is never reached) serves only illustrative
purposes, and we refer the reader to section 3.2 for a discussion of the effect of residual frictional strength.

Holding the weakening to hardening ratio constant (w∕h = 1), we observe (Figure 4b) that the nucleation
size increases with decreasing curvature. For a very large curvature (K = 100), i.e., for a very peaked loading
profile, the critical crack size is ac ≈ 0.59aw ≈ 1.03asw

c , but reaches ac ≈ 5.17aw ≈ 8.93asw
c for a broad

loading profile (K = 0.1). The corresponding maximum slip (plotted in Figure 4d) is correspondingly very
large for peaked loading profiles (𝛿max ≈ 11.31𝛿p for K = 100) and decreases with decreasing curvature
(down to 𝛿max ≈ 1.01∕𝛿p for K = 0.1).

A preliminary observation from Figure 4 is that both the constitutive parameter w∕h and the shape of the
loading profile (through its curvature K) influence the critical crack size. In particular, increasing the value
of w∕h by one order of magnitude tends to induce a moderate increase in ac, while decreasing values of K
tends to induce much larger changes in the nucleation size. In order to understand the respective influence
of the constitutive parameter w∕h and curvature K in a quantitative manner, we computed ac (as well as
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Figure 4. Equilibrium crack size a∕aw and peak slip 𝛿max∕𝛿p as a function of load Rt∕(𝜏p − 𝜏c) for various weakening to
hardening ratios ((a and c) w∕h = 0.01 to 10) and various curvatures of loading profile ((b and d) K = 0.1 to 100). The
critical nucleation size ac∕aw, achieved when there is a vertical tangent to the crack size versus load curves, is marked by
a filled circle.

the maximum slip) for a wide range of K (from 10−4 up to 104) and for w∕h ranging from 0.1 up to 10. The
results are plotted in Figure 5. Figure 5a shows very clearly the increase in ac (well above aw) with decreasing
curvature. Concurrently, Figure 5b indicates that the maximum slip (at the crack center) tends to the slip
hardening distance.

The behavior at small K can be explained as follows. The constitutive response is initially hardening, until
the slip reaches the hardening distance 𝛿p. Thus, as long as the accumulated slip along the crack remains
below 𝛿p, the crack will grow in a stable manner. If the loading profile has a very small curvature, we expect
stable crack growth up to large crack sizes (as long as the maximum slip remains less than 𝛿p, i.e., before
peak stress); then, unstable growth is expected when the center of the crack (where the maximum slip is
achieved) starts weakening. This is illustrated in Figure 6, which shows the stress and slip profiles along the
crack at the nucleation point for a case when K = 10−3. The maximum slip is just above the slip-hardening
distance, and only a very small portion of the crack (around 0.8%) has started weakening.

The scaling of ac with K for K → 0 can be determined as follows. When the crack size a grows in a stable
manner well beyond the length scale ah, i.e., ah∕a ≪ 1, which is allowed for small curvatures as long as
𝛿max ≤ 𝛿p, then the integral term in (8) can be neglected. In that case, when the peak stress is reached at the
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(a) (b)

Figure 5. (a) Crack size and (b) maximum slip at the nucleation point as a function of the curvature of the loading profile
K = 𝜅a2

w∕(𝜏p − 𝜏c).

crack center, we have Rt∕(𝜏p − 𝜏c) ∼ 1, and the condition of no slip at x = a yields

Rt
𝜏p − 𝜏c

− a2𝜅

2(𝜏p − 𝜏c)
∼ 0. (11)

If we then assume that nucleation occurs for 𝛿max ∼ 𝛿p, we have the following asymptote for the
critical cracksize:

ac ∼

√
2(𝜏p − 𝜏c)

𝜅
. (12)

The scaling given in (12) is shown as a dotted line in Figure 5a.

Up to this point we have only looked at solutions for very low background stress 𝜏b ≪ 𝜏c, and hence, the
solutions were not sensitive to 𝜏b. When 𝜏b becomes comparable to 𝜏c, a significant portion of the crack is
under the influence of the background stress itself and not only of the superimposed parabolic load profile.

(a) (b)

Figure 6. Profiles of shear stress (solid black line), imposed load (solid red line), and slip (dotted black line) at the
nucleation point for the case K = 10−3 and w∕h = 1. (b) Close-up view near the crack center, where the fault
is weakening.
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Figure 7. Critical crack size ac∕aw as a function of
background stress (or “understress”) (𝜏c − 𝜏b)∕(𝜏p − 𝜏c), for
normalized peak stresses ranging from 0 (grey curve) to 0.1,
and normalized slip hardening distances of 0.02 and 0.1.
For nonzero hardening, the critical crack size scales with the
inverse square root of the background stress (see slopes in
the top right corner).

Figure 7 reports the critical crack size as a function
of the fault “understress” (𝜏c − 𝜏b)∕(𝜏p − 𝜏c)
for w∕h ranging from 0.1 to 10. The critical
crack size increases with decreasing understress
(i.e., as the background stress becomes closer and
closer to the stress at the onset of slip); simulation
results show that ac∕aw tends to scale with
1∕

√
(𝜏c − 𝜏b)∕(𝜏p − 𝜏c) when (𝜏c−𝜏b)∕(𝜏p−𝜏c) → 0.

An example of slip and stress profile at the
nucleation point for a very low understress is given
in Figure 8. The applied loading profile is peaked
only at the center, and most of the crack is under
the influence of the background stress. Unlike the
case of small curvatures (K ≪ 1), the slip at the
crack center is significantly larger than the critical
hardening distance 𝛿p. Despite the large crack size,
the shear stress change and slip along the crack is
very small far from the crack center. In the example
shown in Figure 8, 𝛿∕𝛿p and (𝜏 − 𝜏c)∕(𝜏p − 𝜏c) are
less than 10−2 for x∕a > 0.285. Because of this very
small slip and stress at the crack edges, the crack
tip is barely identifiable when looking at the slip
and stress profiles along the crack line.

3.2. Large Slip Solutions, 𝜹 > 𝜹p + 𝜹c, and Small-Scale Yielding
When the slip along the crack reaches 𝛿p + 𝛿c, the shear strength becomes equal to the residual value 𝜏r. In
all the situations described in the previous sections, the nucleation point occurs before the residual strength
is reached. However, the residual strength affects the crack propagation beyond the small slip nucleation
point and can sometimes suppress the existence of a small slip nucleation point if it is reached early on
during crack propagation: As slip accumulates along the crack and residual strength is engaged, we expect
that new stable configurations can be reached, depending on the background stress level [Viesca and Rice,
2012; Garagash and Germanovich, 2012].

From a basic energetic consideration, we can first remark that if the background stress is lower than the
residual strength (𝜏b < 𝜏r), the crack is expected to be ultimately stable, i.e., there exists a crack size at which

Figure 8. Shear stress, load, and slip profiles at nucleation
(a = ac) for a very small understress (𝜏c−𝜏b)∕(𝜏p−𝜏c) = 10−3.
Note that a log scale is used for the x axis.

a quasi-static equilibrium solution is met. For
background stresses larger than the residual
strength, a range of scenarios is possible.

In order to explore the behavior of the system
at large slip, it is more natural to rescale stresses
by the strength drop (𝜏p − 𝜏r) and slips by the
slip weakening distance 𝛿c. For simplicity and
consistency, we keep the same nondimensional
parameters K and w∕h for the description of
the curvature and constitutive law, respectively.
Figure 9 shows equilibrium solutions computed
up to large slip 𝛿max > 𝛿p + 𝛿c, for a range of
background stresses. For illustrative purposes we
set the slip weakening distance at 10 times the
slip hardening distance (an upper bound of the
𝛿c∕𝛿p values reported in Table 1). For K = 10
(Figures 9a and 9b), nucleation occurs at small
slip for 𝛿max∕𝛿c = 0.183. Here the background
stress is far enough from the stress at slip onset,
and it does not affect the critical crack size. The
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(a) (b)

(c) (d)

Figure 9. (a,c) Crack size and (b,d) maximum slip as a function of imposed load for background “understress” (𝜏c − 𝜏b)∕
(𝜏p − 𝜏r) ranging from 0.3 to 0.9. K = 10 (Figures 9a and 9b) and K = 100 (Figures 9a and 9b). The small-scale yielding
approximation (s.s.y.) is plotted in grey. The red arrow indicates the potential jump in crack size from the small slip
nucleation point to a new stable configuration at large slip.

crack starts propagating dynamically immediately after the first nucleation point is reached, following the
red arrow (increasing crack size and slip at constant load). When residual friction is engaged, we observe
a strong effect of the background stress on crack propagation. For relatively low background stresses
((𝜏c − 𝜏b)∕(𝜏p − 𝜏r) from 0.75 to 0.9), a new stable configuration is met and dynamic crack propagation
is expected to stop (if dynamic overshoot does not occur). If the imposed load is then further increased,
another nucleation point is reached at large slip. An example of loading, slip, and stress profiles along the
crack at this point is shown in Figure 10, where we note the fully developed process zone near the crack
tip. Conversely, for large enough background stresses ((𝜏c − 𝜏b)∕(𝜏p − 𝜏r) = 0.6 or 0.7), no other stable
branch is reached since the nucleation point at large slip occurs for a lower load than the initial, small slip
nucleation point. In that case, the crack grows dynamically without stopping [Viesca and Rice, 2012;
Garagash and Germanovich, 2012].

For a larger curvature of the loading profile (K = 100, Figures 9c and 9d), the situation is slightly different
because the first nucleation point occurs for a maximum slip 𝛿max that is below but close to 𝛿p + 𝛿c. In those
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Figure 10. Shear stress, load, and slip profiles at nucleation
for large slip. The imposed load curvature is K = 10. Other
parameter values are reported in the figure. The crack tip
process zone is small compared to the total crack size.

cases, the background stress has a small effect
on the nucleation point at small slip. More
importantly, for low enough background stresses
(e.g., the cases (𝜏c − 𝜏b)∕(𝜏p − 𝜏r) = 0.7 and 0.9),
we note that the instability at small slip is almost
suppressed because residual strength is engaged
(and a stable branch appears) almost immediately
beyond the first nucleation point. For large
enough background stresses (e.g., (𝜏c − 𝜏b)∕
(𝜏p − 𝜏r) = 0.3), we do not expect any arrest of
dynamic crack propagation since no other stable
branch is reached beyond the first nucleation point.

Large slip solutions for crack size can be
approximated by functions of the imposed load
via a small-scale yielding asymptotics approach,
where we assume that the crack tip process
zone is fully developed and small compared to
the total crack size. The fracture energy for the
slip-hardening/weakening constitutive law is as
follows [Rice, 1968]:

Gc = ∫
∞

0
(𝜏(𝛿) − 𝜏r)d𝛿 =

1
2
(𝜏p − 𝜏r)𝛿c +

(
(𝜏p − 𝜏r) −

1
2
(𝜏p − 𝜏c)

)
𝛿p. (13)

During crack propagation, this fracture energy has to be balanced by the energy release rate G at the crack
tips. For a crack loaded by a stress equal to max{𝜏b, Rt −𝜅x2∕2+ 𝜏c} on which the shear stress is equal to the
residual strength 𝜏r, we can write the stress intensity factor k at the crack tips as [Rice, 1968]

k =
√

a
𝜋 ∫

a

−a

[𝜏b + Δ𝜏b(x, t)] − 𝜏r√
a2 − x2

dx, (14)

where the local increase in background stress is

Δ𝜏b(x, t) = max{0, 𝜏c − 𝜏b + Rt − 𝜅x2∕2}. (15)

A closed form expression for k is given in section B1. The energy release rate is then simply G = k2∕(2𝜇∗),
and the small-scale yielding propagation criterion is [Rice, 1968]

Gc = k2∕(2𝜇∗). (16)

Equation (16) is an approximation that presumes that the details of the slip-weakening process zone occur
over negligibly small distances relative to the crack length. However, we follow here the path given by
Garagash and Germanovich [2012] who provide a better approximation by considering the finite size of
process zone of an equilibrium slip-weakening crack in the semiinfinite limit [Dempsey et al., 2010]. The
method essentially consists in estimating the stress intensity factor in (16) using an effective crack size
(instead of the total crack size a) accounting for the finite process zone size. Some details of the method
are recalled in section B2, but we refer the reader to the original works of Dempsey et al. [2010] and their
adaptation by Garagash and Germanovich [2012] for further information. The resulting asymptotic behavior
is plotted as thin grey lines in Figure 9 and shows a very good agreement with numerical simulations for
large crack sizes.

4. General Features of Nucleation With Piecewise Linear Hardening/Weakening
Friction Law

In the previous section, we have examined in detail the critical nucleation size and the associated slip
profiles in the case of a locally parabolic loading. In two instances (small curvature and high-background
stress), we have determined that the nucleation size increases dramatically. Despite the differences in the
shape of the slip and loading profiles at the nucleation point, the common feature in both cases is that
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Figure 11. (a) Critical crack size and (b) weakened zone size
as a function of the relative location of the peak strength
along the crack.

the weakening region is concentrated at the
crack center at the onset of instability. Here we
perform an eigenvalue analysis of the crack
problem (3) and show that this feature of the
linear-hardening/weakening law is universal
and does not depend on the specific choice of
the loading shape.

Following the approach of Uenishi and Rice
[2003], we differentiate equation (3) with
respect to time and use the linear strength
versus slip relation (1) to obtain

B(x)V(x, t) = R + 𝜇∗

2𝜋 ∫
a

−a

𝜕V∕𝜕𝜉
𝜉 − x

d𝜉, (17)

where V(x, t) is the slip rate along the crack and

B(x) =
{

h for xp < |x| < a
−w for |x| ≤ xp.

(18)

The points ±xp satisfy 𝛿(x) = 𝛿p. In other
words, from the tips to xp, the fault is slip
strengthening, and from xp to the crack center,
the fault is slip weakening. Note that the
derivation of equation (17) relies on the
nonsingularity condition for stress at the crack
tips (see Uenishi and Rice [2003], for more
details about the derivation).

The slip rate V can be normalized by its root
mean square Vrms. At the onset of nucleation
Vrms becomes infinite, and the corresponding
normalized slip rate v can be rewritten as

a
aw

b(x∕a)v(x∕a, t) = 1
2𝜋 ∫

1

−1

𝜕v∕𝜕𝜉
𝜉 − (x∕a)

d𝜉, (19)

where b(x∕a) = B(x)∕w (equal to −1 for |x| ≤ xp and to h∕w for xp < |x| < a). Equation (19) is in the form of
a generalized eigenvalue problem: we are looking for values of a∕aw such that nontrivial solution v(x∕a) of
(19) exists. The smallest positive value of a∕aw gives us the nucleation length. By contrast with the problem
analyzed by Uenishi and Rice [2003] in the case of linear slip weakening, equation (19) contains additional
parameters, h∕w and xp, which can be chosen arbitrarily.

The problem is solved following the methodology presented in Appendix C. The nucleation length given by
the smallest positive eigenvalue of (19) is shown in Figure 11a as a function of xp∕ac (the relative position
of the transition point from slip hardening to slip weakening) for a range of values of w∕h. For xp∕ac = 1
we naturally retrieve the expected value of ac = 0.579aw, since the crack is entirely in the slip weakening
regime. For decreasing values of xp∕ac, the critical crack size increases. As xp∕ac approaches 0, the critical
crack size tends to infinity (i.e., nucleation will never occur, whatever the crack size, if the whole crack is in
the hardening regime). For a given value of xp∕ac, the critical crack size also increases with decreasing w∕h.
These results based on the eigenvalue analysis are consistent with the full numerical solutions presented
previously: the critical crack size becomes large when a large proportion of the crack is in the hardening
regime. Importantly, we show here that this behavior does not depend upon the particular shape of the
loading profile. The shape of the loading profile and the value of the understress are only driving the system
toward a specific value of xp. In other words, the loading profile influences the proportion of the crack that
is undergoing hardening and weakening.

The transition point xp gives the size of the weakened zone at nucleation. Figure 11b shows this size,
normalized as xp∕aw, as a function of the relative position of the transition point xp∕ac. We observe that the
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weakened zone is systematically smaller than the critical crack size in the pure linear slip weakening case.
Hence, approximating the fracture problem with slip-hardening/weakening friction by simply neglecting
the fraction of the crack experiencing slip hardening and only considering the slip-weakening part of the
crack would lead to a significant overestimate of the nucleation size.

5. Discussion
5.1. Choice and Validity of the Constitutive Law
The slip-dependent constitutive law used here is merely a macroscopic description of the complex
microscopic processes occurring during the brittle deformation of the fault core (e.g., asperity breakage,
microcrack coalescence, sliding on grain boundaries...). Deformation across a fault occurs on a thin but finite
width shear zone, which might be healed due to cementation of the intergranular space [e.g., Angevine
et al., 1982]. The nonmonotonic slip-dependent strength, including the slip-hardening portion at the onset
of slip, was chosen as a representative phenomenological description of the constitutive behavior of intact
rocks [e.g., Paterson and Wong, 2005] and, by extension, of the healed rocks forming the fault core (which
can just be considered as “intact” regarding their mechanical properties). In fact, similar phenomenological
laws have been used for the study of fault instability in the crust [Stuart, 1979; Stuart and Mavko, 1979; Cao
and Aki, 1984; Ohnaka and Yamashita, 1989], but the specificities arising from the slip-hardening behavior
before the peak stress had not seemed to be studied.

Slip hardening followed by slip weakening has been shown to arise naturally in micromechanical friction
models based on slip across rough fault surfaces, as demonstrated by Matsu’ura et al. [1992]. In such a
framework, the phenomenological parameters (stress at the onset of slip, peak stress, slip-hardening
distance, etc.) are related to physical parameters such as the asperity strength and statistical properties of
the sliding surface topography (notably, the cutoff wavelength of surface roughness). A link between the
constitutive friction parameters and the fault surface roughness implies that the constitutive law would
itself be scale dependent. Consequently, instabilities at small scales might occur, as observed, for instance,
by acoustic emissions during the slip-hardening portion of the loading path during laboratory fiction
experiments, while the overall fault remains stable at large scales.

We have made use here of a rate-independent constitutive law; however, we may have alternatively
considered a law with both a rate and state dependence (where state may be represented via the history of
slip rate—or slip—or some other internal variable), the most widely used friction laws of this class stemming
from the work of Dietrich [1979] and Ruina [1983]. Here the strength at a point on the fault is determined
by both a direct response to changes in slip velocity V and by the evolution of a state variable over a
characteristic slip Dc. The relative importance of the two effects at any point on a slipping fault is determined
by the ratio of two local time scales: the time scale associated with changes in velocity (V∕𝜕V∕𝜕t) and the
time scale associated with state evolution (Dc∕V) at a point on the fault. In regions where the former time
scale is much shorter than the latter, slip strengthening via the direct effect occurs, and when the converse is
true (or if the time scales are comparable), then slip weakening may be expected (provided the steady state
behavior is rate weakening).

These laws apply for well-developed slip surfaces in bare rock samples, but their validity for slip across
thick gouge layers is not well understood, as the macroscopically observed constitutive parameters of
the law vary with strain localization, gouge thickness, and particle size within the gouge layer [Marone,
1998]. Moreover, rate-and-state friction laws are designed to capture variations of frictional strength
around a well-defined steady state sliding at constant slip rate: hence, these laws are not expected to
provide a complete description of the early parts of slip across consolidated interfaces. Indeed, the
slip-hardening/weakening behavior does not seem to be a straightforward limiting case of any conventional
rate-and-state friction law (unlike, for instance, the linear slip-weakening model which corresponds to the
“no-healing” limit of rate-and-state aging law [Uenishi and Rice, 2003; Rubin and Ampuero, 2005]).

5.2. Implications for Earthquake Nucleation in Nature
Based on laboratory data obtained in granite [Wong, 1986], Uenishi and Rice [2003] provide numerical
estimates of asw

c of the order of 0.5 to 0.9 m. As shown by our calculations, these values are lower bounds
for the nucleation size of dynamic rupture. As observed in section 3.1, the occurrence of even a moderate
amount of slip hardening prior to slip weakening profoundly modifies the earthquake nucleation size, i.e.,
the size of the slipping region at the onset of dynamic rupture. In two different instances, for either broad
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Figure 12. Profile of slip rate (normalized by its maximum
value, located at the crack center) at nucleation, computed
numerically (as a finite difference) using the slip versus load
history. The parameter values chosen for this example are
shown in the graph. The slip-weakening region (x < xp) is
where slip rate is within a small factor of the peak slip rate
and where inertial effects will first become important.

loading profiles (small K) or background stresses
close to initial strength (𝜏b near 𝜏c), we observed
that the nucleation size can become much larger
than the one expected from pure slip-weakening
friction.

For very broadly peaked loading profiles, we
observed that the nucleation size scales with√

2(𝜏p − 𝜏c)∕𝜅, that is to say, it scales with the
size (radius of curvature) of the loaded patch.
Hence, for very smoothly loaded faults, the
earthquake nucleation size is dictated by the
shape of the imposed tectonic stresses (modulated
by the local pore pressures, when effective stresses
are considered). By contrast, sharp loading profiles
tend to induce localized slip and the hardening
effects can be neglected. Natural fault surfaces
are intrinsically rough, and the geometric
constraints imposed by the fault roughness
provide a source of inhomogeneity in the
background stress. It is now well established that
fault surface roughness is self affine [e.g., Candela

et al., 2012], and hence, there is not a single dominant length scale that could be used to estimate a
curvature for the background stress profile along a fault. Rather, a representative background stress
profile would mimic the complex shape of the fault surface roughness. Such situations are beyond the scope
of the present study, which was focused on a simple geometry in order to highlight the basic properties of
the hardening/weakening constitutive law. It is clear that much work is needed to understand how complex
fault stress patterns affect earthquake nucleation; Our simulations using a single length scale associated
with loading constitutes a first essential step for the understanding of earthquake nucleation along such
complex fault profiles.

The other situation where nucleation size becomes very large compared to the conventional slip-weakening
critical length asw

c is when the background stress 𝜏b becomes close to the initial strength 𝜏c. Remarkably,
in those situations, the slip on the crack is essentially concentrated within a small portion near the crack
center: the hardening portion is very wide and could easily be mistaken for the stress concentration
ahead of the crack tip (see Figure 8). The crack extends well beyond the locally applied peak load. These
observations are of interest for the monitoring of fault deformation by remote sensing techniques or field
measurements and raise the issue of the identification of a crack tip using kinematic reconstructions. Indeed,
in our simulations, the central weakening portion of the crack at the nucleation point can well be smaller
than the critical nucleation size asw

c (as shown in Figure 11b) and yet the whole crack (including the wide
hardening portions) becomes unstable.

Using the results of our quasi-static simulations, we can estimate the slip rate pattern along the crack
immediately prior to the onset of unstable slip; an example is given in Figure 12, where slip rate is computed
as the finite difference between the slip patterns calculated for the last two load steps before the nucleation
point. The slip rate is concentrated near the weakening region at the center of the crack. In the moments
immediately preceding dynamic rupture, the slip rate on the fault is accelerating everywhere but relatively
slowly in the area experiencing slip hardening as compared with the portion of the crack experiencing slip
weakening. As observed previously (Figure 11), the portion of the crack experiencing slip weakening can
be much smaller than the total crack size. Hence, such a phenomenon can help to rationalize experimental
observations of rupture nucleation in rocks, in samples that may be smaller than the nucleation size asw

c
[e.g., Thompson et al., 2006]: a rupture may well appear to be quasi-static while the fault is slowly growing
in the sample but would start accelerating significantly within a small interior region experiencing
slip weakening.

Our results suggest that a limited amount of quasi-static slip is likely to occur over large spatial scales prior
to earthquake nucleation along initially locked, healed faults, such as intraplate continental faults with long
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earthquake recurrence times [e.g., Scholz et al., 1986]. Immediately before earthquake nucleation, slip rate
is accelerating nonuniformly along the fault, and the region experiencing the largest acceleration (here
given approximately by xp) can be localized within a very small patch relative to the dimension of the entire
accelerating area. As a result, the inertial limitations on slip rate are first reached in the fastest accelerating
patch, from which we expect the dynamic rupture to start propagating outward with concomitant emission
of seismic waves. Additionally, the strong weakening mechanisms associated with these dynamic slip rates
[Di Toro et al., 2011] will also begin to operate here. One feature that sets our nucleation solutions apart
from those using pure slip weakening friction is that the slip rates ahead of the fastest accelerating patch,
although small, are also approaching rates at which strong weakening can occur. Furthermore, as seen,
for instance, in Figures 6 and 8, the stress acting on the crack (beyond the onset of slip) is high between
𝜏c and 𝜏p. Such high stresses, combined with the elevated slip rates at nucleation, are likely to enhance
dynamic weakening mechanisms driven by heat production rate [see, for example, Di Toro et al., 2011].
Taken together, these features could make the initial phases of dynamic rupture (initial rupture speed and
starting phases) distinctly different between cases when xp∕ac ≈ 1 (i.e., the entire crack is slip weakening)
and when xp∕ac ≪ 1 (i.e., the slip weakening zone is small).

6. Conclusions and Perspectives

We have calculated earthquake nucleation sizes on faults obeying a nonmonotonic, slip-hardening, and
slip-weakening strength. The choice of the constitutive law was guided by laboratory observations of the
fracture of intact and healed rocks. By contrast with linearly slip-weakening faults [Uenishi and Rice, 2003],
the shape of the loading profile (here its curvature) has an influence on the nucleation size. If the loading
profile is broad enough, the critical nucleation size can become much larger than the characteristic
slip-weakening nucleation size asw

c ≈ 0.579𝜇∗𝛿c∕(𝜏p − 𝜏r), even for small amounts of slip hardening prior
to the peak stress. In addition, for background stresses close enough to the initial strength of the fault, the
crack size also becomes much larger than asw

c . Using an eigenvalue analysis, we have determined that ac is
expected to increase dramatically, independently form the specific form of the loading profile, when the
proportion of the crack undergoing slip weakening is reduced.

In the situations when the nucleation size is very large, the slip immediately behind the crack tip is very small
(see Figures 6 and 8), and the identification of a “crack tip” might be impossible in practice. The region of the
crack where slip is large and where the instability is expected to initiate (the weakening portion) is smaller
than asw

c .

One important implication of our results is that large scale, stable fault creep (albeit for limited amounts
of cumulated slip) can occur on a fault prior to the nucleation of a dynamic rupture event. In contrast
with nucleation simulations performed using rate-and-state friction laws [e.g., Rubin and Ampuero, 2005;
Ampuero and Rubin, 2008], in our calculations the whole fault plane is not sliding. Hence, we model here the
initiation of slip along a fault that is initially perfectly locked, a situation arising in the context of reactivation
of ancient (healed) faults due to changes in tectonic stresses or pore fluid pressures.

Despite the limitations of our assumed slip-dependent constitutive law, our results raise the importance
of the complexity in the fault stress patterns in the nucleation of earthquakes. One natural origin for the
complex background stress field along faults is their geometrical roughness. Further work combining
complex fault stress profiles, pore fluid pressure variations, and more complete constitutive behavior for
intact or healed fault rocks is needed to better understand earthquake nucleation along ancient, dormant
fault subjected to tectonic and/or anthropogenic loading (e.g., fluid or CO2 injection).

Appendix A: Numerical Methods

The numerical method employed to solve equation (8) simultaneously with equation (1) is essentially the
same as the one described by Viesca and Rice [2012]. The idea is to use a Gauss-Chebyshev quadrature
rule for a singular integral transform [Erdogan and Gupta, 1972] to calculate the shear stress at discrete
collocation points using the values of the slip gradient at discrete nodes along the crack. Then the equality
between the shear strength (given by the constitutive law) and the shear stress (given by the slip
distribution) yields an equation for the slip distribution, which is solved by an iterative Newton-Raphson
algorithm.
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The nondimensional form of the equilibrium equation is

𝜏(X) = T − K(ãX)2

2
+ 1

2𝜋ã ∫
1

−1

𝜕𝛿

𝜕𝜉

1
𝜉 − X

d𝜉, (A1)

where 𝜏 = (𝜏 − 𝜏c)∕(𝜏p − 𝜏c), ã = a∕aw and X = x∕a. For simplicity in the description of the method,
we omitted the constant background stress in equation (A1). Because stresses and slip are symmetric with
respect to X = 0, it is convenient to rewrite (A1) for the space variable Y = 2X − 1:

𝜏(Y) = T − Kã2(Y + 1)2

8
+ 1
𝜋ã ∫

1

−1

𝜕𝛿

𝜕𝜉

[
1

𝜉 − Y
+ 1
𝜉 + Y + 2

]
d𝜉, (A2)

where Y ranges from −1 at the crack center to 1 at the crack tip. The integral term is approximated by a
Gauss-Chebyshev quadrature, which approximates

∫
1

−1

f (𝜉)√
1 − 𝜉2

d𝜉 ≈ 𝜋

n

n∑
j=1

f (𝜉j), for 𝜉j = cos (𝜋(2j − 1)∕(2n)). (A3)

To obtain an integrand of the form given in (A3), we define

𝜙(𝜉) = 𝜕𝛿

𝜕𝜉

√
1 − 𝜉2, (A4)

and hence equation (A1) can be written as

𝜏(Y) = T − Kã2(Y + 1)2

8
+ 1

nã

n∑
j=1

𝜙(𝜉j)
[

1
𝜉j − Y

+ 1
𝜉j + Y + 2

]
, (A5)

where the 𝜉j (j = 1,… , n) are Chebyshev nodes

𝜉j = cos
(
𝜋

2j − 1
2n

)
. (A6)

The shear stress and slip are collocated at points Yi = cos(𝜋i∕n) (i = 1,… , n − 1). Equation (A5) can then be
rewritten in matrix form as

𝜏[𝛿i] = T −
Kã2(Yi + 1)2

8
+ 1

ã
Eij𝜙j, (A7)

where the dependency of 𝜏 on 𝛿 (arising from the constitutive slip-dependent friction law) was made
explicit, and

𝛿i = 𝛿(Yi), (A8)

𝜙j = 𝜙(𝜉j), and (A9)

Eij =
1
n

[
1

𝜉j − Yi
+ 1
𝜉j + Yi + 2

]
. (A10)

The discretized slip 𝛿i is expressed as a function of 𝜙j as

𝛿i = Sij𝜙j. (A11)

In order to compute the matrix Sij , we can first remark that, according to the quadrature rule, 𝜙j can be
expressed as a decomposition along the n first Chebyshev polynomials of the first kind:

𝜙j =
n−1∑
m=0

Tm(𝜉j)Bm = CjmBm, (A12)

where Tm(⋅) denotes the mth Chebyshev polynomial of the first kind, and Bm are the corresponding
coefficients. Note that Cjm = Tm(𝜉j) = cos (m𝜋(2j − 1)∕(2n)). Following equation (A4), the slip at node i is
then computed by direct integration of (A12), and is expressed as

𝛿i = DimBm, (A13)

BRANTUT AND VIESCA ©2014. The Authors. 205



Journal of Geophysical Research: Solid Earth 10.1002/2014JB011518

where

Dim =
{

−i𝜋∕n if m = 0,
−(1∕m) sin (mi𝜋∕n) if m ≥ 1.

(A14)

The combination of (A12) and (A13) leads to the following expression for Sij :

Sij = DimC−1
jm . (A15)

In order to determine C−1
jm , which is the inverse of Tm(𝜉j), we make use of the orthogonality of Chebyshev

polynomials with respect to the weight 1∕
√

1 − 𝜉2:

∫
1

−1
Tj(𝜉)Tm(𝜉)

d𝜉√
1 − 𝜉2

=
⎧⎪⎨⎪⎩
𝜋 if j = m = 0,
𝜋∕2 if j = m ≠ 0,
0 else.

(A16)

Using the quadrature rule (A3), the orthogonality condition (A16) implies that

n−1∑
k=0

Tj(𝜉k)Tm(𝜉k) =
⎧⎪⎨⎪⎩

n∕2 if j = m = 0,
n if j = m ≠ 0,
0 else,

(A17)

and, hence, we obtain

C−1
jm =

{
1∕n if m = 0,
(2∕n) cos

(
m𝜋(2j − 1)∕(2n)

)
if m ≥ 1.

(A18)

The relation A7 provides us with n − 1 independent equations. There are n unknown values of 𝜙j , and the
crack size ã is also an unknown. The relation between T and ã is nonmonotonic; hence, it is not convenient
to impose T and attempt to find a. For practical purposes, it is more efficient to let T be an additional
unknown and to impose the maximum slip, denoted 𝛿max, which always occurs at the crack center (since the
loading profile is symmetric). Hence, we have n + 2 unknown: n − 1 values of 𝜙j , a, and T . We need three
additional constraints to close the system.

The first additional constraint comes from the requirement that there is no stress intensity factor at the
crack tip (the crack is nonsingular). This implies that there is no slip gradient at the tip, which requires that
𝜙(𝜉 = −1) = 0 (note that this condition is necessary but, in a strict sense, not sufficient to impose zero
slip gradient at the tip; however, the numerical computations using this weak condition always lead to the
expected nonsingular solutions). There is no Chebyshev node at 𝜉 = 1, but 𝜙(𝜉 = 1) can be accessed via
extrapolation of 𝜙j . The condition is then [Viesca and Rice, 2012]

0 = 𝜙(−1) ≈ 1
n

n∑
j=1

sin (𝜋(2n − 1)(2j − 1)∕(4n))
sin (𝜋(2j − 1)∕(4n))

𝜙n+1−j. (A19)

A second additional constraint is that there must not be any slip gradient at the crack center, because
the loading profile is symmetric and the peak slip must occur at the center. The condition is equivalent to
imposing 𝜙(−1) = 0, and reads

0 = 𝜙(1) ≈ 1
n

n∑
j=1

sin (𝜋(2n − 1)(2j − 1)∕(4n))
sin (𝜋(2j − 1)∕(4n))

𝜙j. (A20)

Finally, we impose the peak slip 𝛿max at the center of the crack (Y = −1), which yields the following
constraint on 𝜙j :

𝛿max = 𝛿(−1) = −∫
1

−1

𝜕𝛿

𝜕𝜉
d𝜉 ≈ −𝜋

n

n∑
j=1

𝜙j. (A21)

Relations (A7) and (A19)–(A21) form a nonlinear system of equations for the unknowns 𝜙j , ã, and T . This
system is solved using the Newton-Raphson algorithm.
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Appendix B: Small-Scale Yielding

Here we develop some of the formulas used in the calculation of the small-scale yielding asymptotics.

B1. Stress Intensity Factor
We first give closed form expressions for the stress intensity factor given in equation (14). If we denote
x0 =

√
2(𝜏c − 𝜏b + Rt)∕𝜅 the point at which Δ𝜏b(x) first reaches 0, we have

k = (𝜏b − 𝜏r)
√
𝜋a + Δk(x0), (B1)

where

Δk(x0) =
√

a
𝜋 ∫

min{a,x0}

−min{a,x0}

𝜏c − 𝜏b + Rt − 𝜅x2∕2√
a2 − x2

dx. (B2)

After some algebra, we find

Δk =
⎧⎪⎨⎪⎩
√

a
𝜋

arcsin
(x0

a

) [
2(𝜏c + Rt − 𝜏b) − 𝜅a2∕2

]
+
√

a
𝜋

𝜅

2
x0

√
a2 − x2

0 if x0 < a,√
𝜋a

[
𝜏c + Rt − 𝜏b − 𝜅a2∕4

]
else.

(B3)

B2. Improved Asymptotics
We briefly recall here the method used to compute precise small-scale yielding asymptotic solutions. We
used the results from Garagash and Germanovich [2012], based on the works of Dempsey et al. [2010]. The
method consists in replacing the crack size a by an effective crack size aeff in the expression of the far-field
stress intensity factor k(a) (in equation (14)). For linear slip weakening with residual strength in the crack tip
process zone, Dempsey et al. [2010] determined that the size of the process zone is

d ≈ 0.466𝜆 (B4)

for very large crack size (i.e., for a − d ≫ 𝜆), where 𝜆 = (𝜋∕2)(k∕(𝜏p − 𝜏r))2 is a characteristic length scale. The
ratio d∕𝜆 is expected to be slightly different from 0.466 in the case studied here because there is some slip
hardening prior to the slip-weakening behavior. Considering cases where the slip-strengthening distance is
small compared to the slip-weakening distance, we neglect the hardening region and use the above value
of d∕𝜆 and find that the approximation is of reasonable quality (see Figure 9).

During crack propagation we have k2∕(2𝜇∗) = Gc, and hence 𝜆 can be estimated as 𝜆∕aw = 𝜋Gc∕(Δ𝜏𝛿c).
Garagash and Germanovich [2012] determined that an accurate estimate of the far-field stress intensity
factor could be calculated when using

aeff = a − 0.466d (B5)

instead of a in the estimation of k, i.e., by reducing the total crack size by a fraction of the process zone size.
Approximate solutions for crack size a∕aw as a function of the imposed load Rt∕Δ𝜏 can then be calculated
by using the crack propagation criterion (16) with the modified far-field k(aeff) (computed using (B1) and
(B3)). Those solutions are plotted in Figure 9 in grey (labeled “s.s.y”). Despite the approximation made that
the ratio d∕𝜆 would remain equal to 0.466, we observe that the asymptotic solution does a very good job
for crack sizes a∕aw above 2. As a note of caution, however, we wish to note that this overall good quality
of the modified small-scale yielding asymptote might be deteriorated when choosing very large hardening
distance and/or very large peak stress. In those cases, the ratio d∕𝜆 might be altered and a better correction
could be desirable.

Appendix C: Eigenvalue Problem

Using the nondimensional crack size ã = a∕aw and coordinate X = x∕a, equation (19) reads

ãb(X)v(X) = 1
2𝜋 ∫

1

−1

𝜕v
𝜕𝜉

d𝜉
𝜉 − X

. (C1)
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We expect 𝜕v(𝜉)∕𝜕𝜉 to behave as 1∕
√

1 − 𝜉2 near the tips 𝜉±1. This follows from the inversion of (C1), which
gives [e.g., Rice, 1968]:

𝜕v(X)
𝜕X

= 2
𝜋

ã√
1 − X2 ∫

1

−1

√
1 − 𝜉2

𝜉 − X
b(𝜉)v(𝜉)d𝜉, (C2)

where the integral is finite. Hence, we define

𝜓(𝜉) = 𝜕v
𝜕𝜉

√
1 − 𝜉2, (C3)

and use the Gauss-Chebyshev quadrature rule to obtain

ãb(X)v(X) = 1
2n

n∑
j=1

1
𝜉j − X

𝜓(𝜉j), (C4)

where 𝜉j = cos (𝜋(2j − 1)∕(2n)). The slip rate v is collocated at points Xi = cos (𝜋i∕n) (i = 1,… , n − 1). The
discretized equation is rewritten in matrix form as

ãAij𝜓j = Kij𝜓j, (C5)

where 𝜓j = 𝜓(𝜉j), Kij = (1∕2n)(1∕(𝜉j − Xi)), and

Aij = b(Xi)Sij (no sum on i). (C6)

The eigenvalues and eigenvectors are then obtained numerically using Matlab’s function eig, setting
n = 801.
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