681 research outputs found

    Determination of cut-off and correlates of delay in treatment-seeking of febrile illness: a retrospective analysis

    Get PDF
    Background Early diagnosis and treatment of malaria symptoms reduces the risk of severe complication and malaria transmission. However, delay in malaria diagnosis and treatment is a major public health problem in India. The primary aim of the study was to determine cut-off for the delay in seeking treatment of fever, and the secondary aim was to identify the factors associated with delay in malaria-endemic areas of Assam, Northeast India. Methods The present study analysed data from two prior cross-sectional surveys (community- and hospital-based) that was conducted to study the health-seeking behaviour of people residing in high malaria-endemic areas of Assam, Northeast India. The hospital-based survey data were used to determine optimal cut-off for the delay in reporting, and further, used to identify the factors associated with delay using community-based data. Results Mean age of fever cases was similar in both community- and hospital-based surveys (23.1 years vs 24.2 years, p = 0.229). Delay in reporting fever was significantly higher among hospital inpatients compared to community-based fever cases (3.6 ± 2.1 vs 4.0 ± 2.6 days; p = 0.006). Delay of > 2 days showed higher predictive ability (sensitivity: 96.4%, and ROC area: 67.5%) compared to other cut-off values (> 3, > 4, and > 5 days). Multivariable logistic regression analysis revealed that the adjusted odds ratio (aOR) of delay was significantly higher for people living in rural areas (1.52, 95%CI: 1.11–2.09), distance (> 5 km) to health facility (1.93, 95%CI: 1.44–2.61), engaged in agriculture work (2.58, 95%CI: 1.97–3.37), and interaction effect of adult male aged 20–40 years (1.71, 95%CI: 1.06–2.75). Conclusion The delay (> 2 days) in seeking treatment was likely to be twice among those who live in rural areas and travel > 5 km to assess health care facility. The findings of the study are useful in designing effective intervention programmes for early treatment of febrile illness to control malaria

    The purification method of water from treasures of Vedas and Upavedas

    Get PDF
    Water is a vital source of life and quality of water is major concern now-a-days. Water is limited resource and demand for it is increasing at an alarming rate. Safe clean and adequate drinking water is vital for existence of all living organism. Ayurveda being the science of life gives us great scope as a researcher. There are various techniques mentioned in Ayurvedic classics for purification of “Dushita Jala” from the times of Veda’s. Acharya’s focused on water purification they described that a sunray passing through the water purifies it. In Samhita Kala, the number of technique increased. Acharya Sushruta and Vagbhatta have mentioned to use various plants and method to purify water. Various Nighantu also mentioned different techniques

    Role of Panchakarma in Visha Chiktisa

    Get PDF
    Disease and death due to poisoning is a burning issue in worldwide. The term Poisoning not only limited upto animal and vegetable poisons, it can include Dooshivisha, Garavisha and various radiations. Ayurveda has described different methods of treatment in poisoning. Panchakarma therapy has great importance because it can remove toxins from deeper tissue level. Panchakarma procedures are used depending upon the route of entry of poison and absorption. This article concludes how Panchakarma procedures are useful in Visha Chikitsa as a detoxification therapy

    Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination

    Get PDF
    For studies of remyelination in demyelinating diseases, the cuprizone model of CC (corpus callosum) demyelination has experimental advantages that include overall size, proximity to neural stem cells of the subventricular zone, and correlation with a lesion predilection site in multiple sclerosis. In addition, cuprizone treatment can be ended to allow more direct analysis of remyelination than with viral or autoimmune models. However, CC demyelination lacks a useful functional correlate in rodents for longitudinal analysis throughout the course of demyelination and remyelination. In the present study, we tested two distinct behavioural measurements in mice fed 0.2% cuprizone. Running on a ‘complex' wheel with varied rung intervals requires integration between cerebral hemispheres for rapid bilateral sensorimotor coordination. Maximum running velocity on the ‘complex' wheel decreased during acute (6 week) and chronic (12 week) cuprizone demyelination. Running velocity on the complex wheel distinguished treated (for 6 weeks) from non-treated mice, even after a 6-week recovery period for spontaneous remyelination. A second behavioural assessment was a resident–intruder test of social interaction. The frequency of interactive behaviours increased among resident mice after acute or chronic demyelination. Differences in both sensorimotor coordination and social interaction correlated with demonstrated CC demyelination. The wheel assay is applicable for longitudinal studies. The resident–intruder assay provides a complementary assessment of a distinct modality at a specific time point. These behavioural measurements are sufficiently robust for small cohorts as a non-invasive assessment of demyelination to facilitate analysis of subsequent remyelination. These measurements may also identify CC involvement in other mouse models of central nervous system injuries and disorders

    In situ characterisation of surface roughness and its amplification during multilayer single-track laser powder bed fusion additive manufacturing

    Get PDF
    Surface roughness controls the mechanical performance and durability (e.g., wear and corrosion resistance) of laser powder bed fusion (LPBF) components. The evolution mechanisms of surface roughness during LPBF are not well understood due to a lack of in situ characterisation methods. Here, we quantified key processes and defect dynamics using synchrotron X-ray imaging and ex situ optical imaging and explained the evolution mechanisms of side-skin and top-skin roughness during multi-layer LPBF of Ti-6Al-4V (where down-skin roughness was out of the project scope). We found that the average surface roughness alone is not an accurate representation of surface topology of an LPBF component and that the surface topology is multimodal (e.g., containing both roughness and waviness) and multiscale (e.g., from 25 µm sintered powder features to 250 µm molten pool wavelength). Both roughness and topology are significantly affected by the formation of pre-layer humping, spatter, and rippling defects. We developed a surface topology matrix that accurately describes surface features by combining 8 different metrics: average roughness, root mean square roughness, maximum profile peak height, maximum profile valley height, mean height, mean width, skewness, and melt pool size ratio. This matrix provides a guide to determine the appropriate linear energy density to achieve the optimum surface finish of Ti-6Al-4V thin-wall builds. This work lays a foundation for surface texture control which is critical for build design, metrology, and performance in LPBF

    Evaluation of stability of directly standardized rates for sparse data using simulation methods.

    Get PDF
    Background Directly standardized rates (DSRs) adjust for different age distributions in different populations and enable, say, the rates of disease between the populations to be directly compared. They are routinely published but there is concern that a DSR is not valid when it is based on a “small” number of events. The aim of this study was to determine the value at which a DSR should not be published when analyzing real data in England. Methods Standard Monte Carlo simulation techniques were used assuming the number of events in 19 age groups (i.e., 0–4, 5–9, ... 90+ years) follow independent Poisson distributions. The total number of events, age specific risks, and the population sizes in each age group were varied. For each of 10,000 simulations the DSR (using the 2013 European Standard Population weights), together with the coverage of three different methods (normal approximation, Dobson, and Tiwari modified gamma) of estimating the 95% confidence intervals (CIs), were calculated. Results The normal approximation was, as expected, not suitable for use when fewer than 100 events occurred. The Tiwari method and the Dobson method of calculating confidence intervals produced similar estimates and either was suitable when the expected or observed numbers of events were 10 or greater. The accuracy of the CIs was not influenced by the distribution of the events across categories (i.e., the degree of clustering, the age distributions of the sampling populations, and the number of categories with no events occurring in them). Conclusions DSRs should not be given when the total observed number of events is less than 10. The Dobson method might be considered the preferred method due to the formulae being simpler than that of the Tiwari method and the coverage being slightly more accurate

    Memory properties and charge effect study in Si nanocrystals by scanning capacitance microscopy and spectroscopy

    Get PDF
    In this letter, isolated Si nanocrystal has been formed by dewetting process with a thin silicon dioxide layer on top. Scanning capacitance microscopy and spectroscopy were used to study the memory properties and charge effect in the Si nanocrystal in ambient temperature. The retention time of trapped charges injected by different direct current (DC) bias were evaluated and compared. By ramp process, strong hysteresis window was observed. The DC spectra curve shift direction and distance was observed differently for quantitative measurements. Holes or electrons can be separately injected into these Si-ncs and the capacitance changes caused by these trapped charges can be easily detected by scanning capacitance microscopy/spectroscopy at the nanometer scale. This study is very useful for nanocrystal charge trap memory application

    An Exact Fluctuating 1/2-BPS Configuration

    Full text link
    This work explores the role of thermodynamic fluctuations in the two parameter giant and superstar configurations characterized by an ensemble of arbitrary liquid droplets or irregular shaped fuzzballs. Our analysis illustrates that the chemical and state-space geometric descriptions exhibit an intriguing set of exact pair correction functions and the global correlation lengths. The first principle of statistical mechanics shows that the possible canonical fluctuations may precisely be ascertained without any approximation. Interestingly, our intrinsic geometric study exemplifies that there exist exact fluctuating 1/2-BPS statistical configurations which involve an ensemble of microstates describing the liquid droplets or fuzzballs. The Gaussian fluctuations over an equilibrium chemical and state-space configurations accomplish a well-defined, non-degenerate, curved and regular intrinsic Riemannian manifolds for all physically admissible domains of black hole parameters. An explicit computation demonstrates that the underlying chemical correlations involve ordinary summations, whilst the state-space correlations may simply be depicted by standard polygamma functions. Our construction ascribes definite stability character to the canonical energy fluctuations and to the counting entropy associated with an arbitrary choice of excited boxes from an ensemble of ample boxes constituting a variety of Young tableaux.Comment: Minor changes, added references, 30 pages, 4 figures, PACS numbers: 04.70.-s: Physics of black holes; 04.70.-Bw: Classical black holes; 04.50.Gh Higher-dimensional black holes, black strings, and related objects; 04.60.Cf Gravitational aspects of string theory, accepted for publication in JHE

    State-space Manifold and Rotating Black Holes

    Full text link
    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ MM-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric AdS5AdS_5 black holes, D1D_1-D5D_5 configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scaling property suggest that the brane-brane statistical pair correlation functions divulge an asymmetric nature, in comparison with the others. This approach indicates that all above configurations are effectively attractive and stable, on an arbitrary hyper-surface of the state-space manifolds. It is nevertheless noticed that there exists an intriguing relationship between non-ideal inter-brane statistical interactions and phase transitions. The ramifications thus described are consistent with the existing picture of the microscopic CFTs. We conclude with an extended discussion of the implications of this work for the physics of black holes in string theory.Comment: 44 pages, Keywords: Rotating Black Holes; State-space Geometry; Statistical Configurations, String Theory, M-Theory. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related objects. Edited the bibliograph
    corecore