831 research outputs found

    Sales promotions and channel coordination

    Get PDF
    Consumer sales promotions are usually the result of the decisions of two marketing channel parties, the manufacturer and the retailer. In making these decisions, each party normally follows its own interest: i.e. maximizes its own profit. Unfortunately, this results in a suboptimal outcome for the channel as a whole. Independent profit maximization by channel parties leads to a lack of channel coordination with the implication of leaving money on the table. This may well contribute to the notoriously low profitability of sales promotions. This paper first shows analytically why the suboptimality occurs, and then presents an empirical demonstration, using a unique dataset from an Efficient Consumer Response (ECR) project; ECR is a movement in which parties work together to optimize the distribution channel). In this dataset, actual profit is only a small fraction of potential profit, implying that there is a large degree of suboptimality. It is important that (1) channel parties are aware of this suboptimality; and (2) that they have tools to deal with it. Solutions to the channel coordination problem should ensure that the goals of the individual channel parties are aligned with the goals of the channel as a whole. The paper proposes one particular agreement for this purpose, called proportional discount sharing. Application to the ECR data shows a win-win result for both the manufacturer and the retailer. Recognition of the channel coordination problem by the manufacturer and the retailer is the necessary starting point for agreeing on a way of solving it in a win-win fashion

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    GLAST: Understanding the High Energy Gamma-Ray Sky

    Full text link
    We discuss the ability of the GLAST Large Area Telescope (LAT) to identify, resolve, and study the high energy gamma-ray sky. Compared to previous instruments the telescope will have greatly improved sensitivity and ability to localize gamma-ray point sources. The ability to resolve the location and identity of EGRET unidentified sources is described. We summarize the current knowledge of the high energy gamma-ray sky and discuss the astrophysics of known and some prospective classes of gamma-ray emitters. In addition, we also describe the potential of GLAST to resolve old puzzles and to discover new classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by K.S. Cheng and G.E. Romer

    Identifying differential exon splicing using linear models and correlation coefficients

    Get PDF
    Background: With the availability of the Affymetrix exon arrays a number of tools have been developed to enable the analysis. These however can be expensive or have several pre-installation requirements. This led us to develop an analysis workflow for analysing differential splicing using freely available software packages that are already being widely used for gene expression analysis. The workflow uses the packages in the standard installation of R and Bioconductor (BiocLite) to identify differential splicing. We use the splice index method with the LIMMA framework. The main drawback with this approach is that it relies on accurate estimates of gene expression from the probe-level data. Methods such as RMA and PLIER may misestimate when a large proportion of exons are spliced. We therefore present the novel concept of a gene correlation coefficient calculated using only the probeset expression pattern within a gene. We show that genes with lower correlation coefficients are likely to be differentially spliced.Results: The LIMMA approach was used to identify several tissue-specific transcripts and splicing events that are supported by previous experimental studies. Filtering the data is necessary, particularly removing exons and genes that are not expressed in all samples and cross-hybridising probesets, in order to reduce the false positive rate. The LIMMA approach ranked genes containing single or few differentially spliced exons much higher than genes containing several differentially spliced exons. On the other hand we found the gene correlation coefficient approach better for identifying genes with a large number of differentially spliced exons.Conclusion: We show that LIMMA can be used to identify differential exon splicing from Affymetrix exon array data. Though further work would be necessary to develop the use of correlation coefficients into a complete analysis approach, the preliminary results demonstrate their usefulness for identifying differentially spliced genes. The two approaches work complementary as they can potentially identify different subsets of genes (single/few spliced exons vs. large transcript structure differences)

    Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28

    Get PDF
    An alkalitolerant fungus, Aspergillus fumigatus strain MA28 produced significant amounts of cellulase-free xylanase when grown on a variety of agro-wastes. Wheat bran as the sole carbon source supported higher xylanase production (8,450Β U/L) than xylan (7,500Β U/L). Soybean meal was observed to be the best nitrogen source for xylanase production (9,000Β U/L). Optimum medium pH for xylanase production was 8 (9,800Β U/L), though, significant quantities of the enzyme was also produced at pH 7 (8,500Β U/L), 9 (8,200Β U/L) and 10 (4,600Β U/L). The xylanase was purified by ammonium sulphate precipitation and carboxymethyl cellulose chromatography, and was found to have a molecular weight of 14.4Β kDa with a Vmax of 980Β ΞΌmol/min/mg of protein and a Km of approximately 4.9Β mg/mL. The optimum temperature and pH for enzyme activity was 50Β Β°C and pH 8, respectively. However, the enzyme also showed substantial residual activity at 60–70Β Β°C (53–75%) and at alkaline pH 8–9 (56–88%)

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information

    Predictors of anti-convulsant treatment failure in children presenting with malaria and prolonged seizures in Kampala, Uganda

    Get PDF
    BACKGROUND: In endemic areas, falciparum malaria remains the leading cause of seizures in children presenting to emergency departments. In addition, seizures in malaria have been shown to increase morbidity and mortality in these patients. The management of seizures in malaria is sometimes complicated by the refractory nature of these seizures to readily available anti-convulsants. The objective of this study was to determine predictors of anti-convulsant treatment failure and seizure recurrence after initial control among children with malaria. METHODS: In a previous study, the efficacy and safety of buccal midazolam was compared to that of rectal diazepam in the treatment of prolonged seizures in children aged three months to 12 years in Kampala, Uganda. For this study, predictive models were used to determine risk factors for anti-convulsant treatment failure and seizure recurrence among the 221 of these children with malaria. RESULTS: Using predictive models, focal seizures (OR 3.21; 95% CI 1.42-7.25, p = 0.005), cerebral malaria (OR 2.43; 95% CI 1.20-4.91, p = 0.01) and a blood sugar >or=200 mg/dl at presentation (OR 2.84; 95% CI 1.11-7.20, p = 0.02) were independent predictors of treatment failure (seizure persistence beyond 10 minutes or recurrence within one hour of treatment). Predictors of seizure recurrence included: 1) cerebral malaria (HR 3.32; 95% CI 1.94-5.66, p < 0.001), 2) presenting with multiple seizures (HR 2.45; 95% CI 1.42-4.23, p = 0.001), 3) focal seizures (HR 2.86; 95% CI 1.49-5.49, p = 0.002), 4) recent use of diazepam (HR 2.43; 95% CI 1.19-4.95, p = 0.01) and 5) initial control of the seizure with diazepam (HR 1.96; 95% CI 1.16-3.33, p = 0.01). CONCLUSION: Specific predictors, including cerebral malaria, can identify patients with malaria at risk of anti-convulsant treatment failure and seizure recurrence

    In vitro activity of daptomycin, linezolid and rifampicin on Staphylococcus epidermidis biofilms

    Get PDF
    Owing to their massive use, Staphylococcus epidermidis has recently developed significant resistance to several antibiotics, and became one of the leading causes of hospital-acquired infections. Current antibiotics are typically ineffective in the eradication of bacteria in biofilmassociated persistent infections. Accordingly, the paucity of effective treatment against cells in this mode of growth is a key factor that potentiates the need for new agents active in the prevention or eradication of biofilms. Daptomycin and linezolid belong to the novel antibiotic therapies that are active against gram-positive cocci. On the other hand, rifampicin has been shown to be one of the most potent, prevalent antibiotics against S. epidermidis biofilms. Therefore, the main aim of this study was to study the susceptibility of S. epidermidis biofilm cells to the two newer antimicrobial agents previously mentioned, and compare the results obtained with the antimicrobial effect of rifampicin, widely used in the prevention/treatment of indwelling medical device infections. To this end the in vitro activities of daptomycin, linezolid, and rifampicin on S. epidermidis biofilms were accessed, using these antibiotics at MIC and peak serum concentrations. The results demonstrated that at MIC concentration, rifampicin was the most effective antibiotic tested. At peak serum concentration, both strains demonstrated similar susceptibility to rifampicin and daptomycin, with colony-forming units (CFUs) reductions of approximately 3–4 log10, with a slightly lower response to linezolid, which was also more strain dependent. However, considering all the parameters studied, daptomycin was considered the most effective antibiotic tested, demonstrating an excellent in vitro activity against S. epidermidis biofilm cells. In conclusion, this antibiotic can be strongly considered as an acceptable therapeutic option for S. epidermidis biofilm-associated infections and can represent a potential alternative to rifampicin in serious infections where rifampicin resistance becomes prevalent.Bruna Leite acknowledges the financial support from ISAC/Program Erasmus Munds External Cooperation and the IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus of Gualtar. Fernanda Gomes and Pilar Teixeira fully acknowledge the financial support from Fundacao para a Ciencia e Tecnologia (FCT) through the grants SFRH/BD/32126/2006 and SFRH/BPD/26803/2006, respectively
    • …
    corecore