4,817 research outputs found

    Meshfree numerical schemes applied to seepage problems through earth dams

    Get PDF
    Modelling seepage along with the mechanical responses of deformable Earth Dams under transient conditions is a challenging task, since both coupling between different phases, and computation of free-surface variables are involved. In the present work, we take on the meshfree numerical schemes to establish a framework for solving coupled, transient problems for unconfined seepage through Earth Dams. The equations of Biot are formulated in displacement (or u − w formulation) assuming an elastic solid skeleton. Shape functions based on the principle of Maximum Entropy are implemented for the meshfree framework. The free surface location and its evolution in time, is obtained by interpolation of pore water pressures through the domain. Applications to benchmark problems are compared with available results in the literature. The preliminary simulations for steady flow conditions show promising results

    Dynamic consolidation problems in saturated soils solved through u-w formulation in a LME meshfree framework

    Get PDF
    A meshfree numerical model, based on the principle of Local Maximum Entropy (LME), including a B-bar algorithm to avoid instabilities, is applied to solve axisymmetric consolidation problems in elastic saturated soils. This numerical scheme has been previously validated for purely elastic problems without water (mono phase), as well as for steady seepage in elastic porous media. Hereinafter, an implementation of the novel numerical method in the axisymmetric configuration is proposed, and the model is validated for well known theoretical problems of consolidation in saturated soils, under both static and dynamic conditions with available analytical solutions. The solutions obtained with the new methodology are compared with a finite element commercial software for a set of examples. After validated, solutions for dynamic radial consolidation and sinks, which have not been found elsewhere in the literature, are presented as a novelty. This new numerical approach is demonstrated to be feasible for this kind of problems in porous media, particularly for high frequency, dynamic problems, for which very few results have been found in the literature in spite of their high practical importance

    Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes

    Get PDF
    The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders

    Fluctuations of a holographic quantum Hall fluid

    Full text link
    We analyze the neutral spectrum of the holographic quantum Hall fluid described by the D2-D8' model. As expected for a quantum Hall state, we find the system to be stable and gapped and that, at least over much of the parameter space, the lowest excitation mode is a magneto-roton. In addition, we find magneto-rotons in higher modes as well. We show that these magneto-rotons are direct consequences of level crossings between vector and scalar modes.Comment: 20 pages, 8 figures; v.2 figures improved, 2 figures added, and text clarified particularly in Sec. 5, to appear in JHE

    Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments

    Full text link
    In the current galaxy formation scenarios, two physical phenomena are invoked to build disk galaxies: hierarchical mergers and more quiescent external gas accretion, coming from intergalactic filaments. Although both are thought to play a role, their relative importance is not known precisely. Here we consider the constraints on these scenarios brought by the observation-deduced star formation history on the one hand, and observed dynamics of galaxies on the other hand: the high frequency of bars and spirals, the high frequency of perturbations such as lopsidedness, warps, or polar rings. All these observations are not easily reproduced in simulations without important gas accretion. N-body simulations taking into account the mass exchange between stars and gas through star formation and feedback, can reproduce the data, only if galaxies double their mass in about 10 Gyr through gas accretion. Warped and polar ring systems are good tracers of this accretion, which occurs from cold gas which has not been virialised in the system's potential. The relative importance of these phenomena are compared between the field and rich clusters. The respective role of mergers and gas accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed. D. Block et al., Kluwe

    The epidemiology of reoperations for orthopaedic trauma.

    Get PDF
    Introduction: The Royal College of Surgeons of England (RCS) has issued guidance regarding the use of reoperation rates in the revalidation of UK-based orthopaedic surgeons. Currently, little has been published concerning acceptable rates of reoperation following primary surgical management of orthopaedic trauma, particularly with reference to revalidation. / Methods: A retrospective review was conducted of patients undergoing clearly defined reoperations following primary surgical management of trauma between 1 January 2010 and 31 December 2011. A full case note review was undertaken to establish the demographics, clinical course and context of reoperation. A review of the imaging was performed to establish whether the procedure performed was in line with accepted trauma practice and whether the technical execution was acceptable. / Results: A total of 3,688 patients underwent primary procedures within the time period studied while 70 (1.90%, 99% CI: 1.39–2.55) required an unplanned reoperation. Thirty-nine (56%) of these patients were male. The mean age of patients was 56 years (range: 18–98 years) and there was a median time to reoperation of 50 days (IQR: 13–154 days). Potentially avoidable reoperations occurred in 41 patients (58.6%, 99% CI: 43.2–72.6). This was largely due to technical errors (40 patients, 57.1%, 99% CI: 41.8–71.3), representing 1.11% (99% CI: 0.73–1.64) of the total trauma workload. Within RCS guidelines, 28-day reoperation rates for hip, wrist and ankle fractures were 1.4% (99% CI: 0.5–3.3), 3.5% (99% CI: 0.8%–12.1) and 1.86% (99% CI: 0.4–6.6) respectively. / Conclusions: We present novel work that has established baseline reoperation rates for index procedures required for revalidation of orthopaedic surgeons

    Identification of Natural Bispecific Antibodies against Cyclic Citrullinated Peptide and Immunoglobulin G in Rheumatoid Arthritis

    Get PDF
    BACKGROUND: Previous studies indicate that natural bispecific antibodies can be readily produced in vivo when the body is simultaneously stimulated with 2 distinct antigens. Patients with rheumatoid arthritis (RA) usually exhibit persistent immune responses to various autoantigens, raising the possibility that natural bispecific antibodies against 2 distinct autoantigens might exist. METHODOLOGY/PRINCIPAL FINDINGS: We identified the presence of natural bispecific antibodies against cyclic citrullinated peptide (CCP) and immunoglobulin G (IgG) in RA patients' sera by means of a double-antigen sandwich enzyme-linked immunosorbent assay (ELISA). The spontaneous emergence of bispecific antibodies was confirmed by mixing different proportions of 1 anti-CCP-positive serum and 1 rheumatoid factor (RF)-positive serum in vitro. Among the tested samples, positive correlations were found between the presence of bispecific antibodies and both IgG4 anti-CCP antibodies and IgG4 RF (r = 0.507, p<0.001 and r = 0.249, p = 0.044, respectively), suggesting that the IgG4 subclass is associated with this phenomenon. Furthermore, bispecific antibodies were selectively generated when several anti-CCP- and RF-positive sera were mixed pairwise, indicating that factors other than the monospecific antibody titers may also contribute to the production of the natural bispecific antibodies. CONCLUSIONS/SIGNIFICANCE: We successfully identified the presence of natural bispecific antibodies. Our results suggest that these antibodies originate from anti-CCP and RF in the sera of RA patients. The natural occurrence of bispecific antibodies in human diseases may provide new insights for a better understanding of the diseases. Further investigations are needed to elucidate their precise generation mechanisms and explore their clinical significance in disease development and progression in a larger study population

    Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image compression and scaling on automated image analysis of immunohistochemical (IHC) stainings and automated tumor segmentation.</p> <p>Methods</p> <p>Two tissue microarray (TMA) slides containing 800 samples of breast cancer tissue immunostained against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer images was furthermore scaled down either to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The automated tools were validated by comparing the results from losslessly compressed and non-scaled images with results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between results from compressed and scaled images and results from lossless and non-scaled images.</p> <p>Results</p> <p>Both of the studied image analysis methods showed good agreement between visual and automated results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93 was observed between losslessly compressed images and compression ratios up to 1:25.</p> <p>Conclusions</p> <p>The results of this study suggest that images stored for assessment of the extent of immunohistochemical staining can be compressed and scaled significantly, and images of tumors to be segmented can be compressed without compromising computer-assisted analysis results using studied methods.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/2442925476534995</url></p
    corecore