38 research outputs found

    Assisting dependent people at home through autonomous unmanned aerial vehicles

    Get PDF
    This work describes a proposal of autonomous unmanned aerial vehicles (AUAVs) for home assistance of dependent people. AUAVs will monitor and recognize human activities during flight to improve their quality of life. However, before bringing such AUAV assistance to real homes, several challenges must be faced to make them viable and practical. Some challenges are technical and some others are related to human factors. In particular, several technical aspects are described for AUAV assistance: (1) flight control, based on our active disturbance rejection control algorithm, (2) flight planning (navigation in obstacle environments), and, (3) processing signals, acquired both from flight-control and monitoring sensors. From the assisted person’s viewpoint, our research focuses on three cues: (1) the user’s perception about AUAV assistance, (2) the influence on human acceptance of AUAV appearance and behavior at home, and (3) the human-robot interaction between assistant AUAV and assisted person. Finally, virtual reality environments are proposed to carry out preliminary tests and user acceptance evaluations.This work has been partially supported by Spanish Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigaci´on (AEI) / European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant, and by CIBERSAM of the Instituto de Salud Carlos III. Lidia M. Belmonte holds FPU014/05283 scholarship from Spanish Ministerio de Educaci´on y Formación Profesional

    Pathogens and host immunity in the ancient human oral cavity.

    Get PDF
    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, 'red complex' pathogens and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past

    A Vision-based Quadrotor Multi-robot Solution for the Indoor Autonomy Challenge of the 2013 International Micro Air Vehicle Competition

    No full text
    peer reviewedThis paper presents a completely autonomous solution to participate in the 2013 International Micro Air Vehicle Indoor Flight Competition ({IMAV2013}). Our proposal is a modular multi-robot swarm architecture, based on the Robot Operating System (ROS) software framework, where the only information shared among swarm agents is each robot's position. Each swarm agent consists of an {AR Drone 2.0} quadrotor connected to a laptop which runs the software architecture. In order to present a completely visual-based solution the localization problem is simplified by the usage of ArUco visual markers. These visual markers are used to sense and map obstacles and to improve the pose estimation based on the IMU and optical data flow by means of an Extended Kalman Filter localization and mapping method. The presented solution and the performance of the CVG\_UPM team were awarded with the First Prize in the Indoors Autonomy Challenge of the {IMAV2013} competition
    corecore