29 research outputs found

    Mitochondrial Dysfunction and Adipogenic Reduction by Prohibitin Silencing in 3T3-L1 Cells

    Get PDF
    Increase in mitochondrial biogenesis has been shown to accompany brown and white adipose cell differentiation. Prohibitins (PHBs), comprised of two evolutionarily conserved proteins, prohibitin-1 (PHB1) and prohibitin-2 (PHB2), are present in a high molecular-weight complex in the inner membrane of mitochondria. However, little is known about the effect of mitochondrial PHBs in adipogenesis. In the present study, we demonstrate that the levels of both PHB1 and PHB2 are significantly increased during adipogenesis of 3T3-L1 preadipocytes, especially in mitochondria. Knockdown of PHB1 or PHB2 by oligonucleotide siRNA significantly reduced the expression of adipogenic markers, the accumulation of lipids and the phosphorylation of extracellular signal-regulated kinases. In addition, fragmentation of mitochondrial reticulum, loss of mitochondrial cristae, reduction of mitochondrial content, impairment of mitochondrial complex I activity and excessive production of ROS were observed upon PHB-silencing in 3T3-L1 cells. Our results suggest that PHBs are critical mediators in promoting 3T3-L1 adipocyte differentiation and may be the potential targets for obesity therapies

    Visual Information Alone Changes Behavior and Physiology during Social Interactions in a Cichlid Fish (Astatotilapia burtoni)

    Get PDF
    Social behavior can influence physiological systems dramatically yet the sensory cues responsible are not well understood. Behavior of male African cichlid fish, Astatotilapia burtoni, in their natural habitat suggests that visual cues from conspecifics contribute significantly to regulation of social behavior. Using a novel paradigm, we asked whether visual cues alone from a larger conspecific male could influence behavior, reproductive physiology and the physiological stress response of a smaller male. Here we show that just seeing a larger, threatening male through a clear barrier can suppress dominant behavior of a smaller male for up to 7 days. Smaller dominant males being β€œattacked” visually by larger dominant males through a clear barrier also showed physiological changes for up to 3 days, including up-regulation of reproductive- and stress-related gene expression levels and lowered plasma 11-ketotestesterone concentrations as compared to control animals. The smaller males modified their appearance to match that of non-dominant males when exposed to a larger male but they maintained a physiological phenotype similar to that of a dominant male. After 7 days, reproductive- and stress- related gene expression, circulating hormone levels, and gonad size in the smaller males showed no difference from the control group suggesting that the smaller male habituated to the visual intruder. However, the smaller male continued to display subordinate behaviors and assumed the appearance of a subordinate male for a full week despite his dominant male physiology. These data suggest that seeing a larger male alone can regulate the behavior of a smaller male but that ongoing reproductive inhibition depends on additional sensory cues. Perhaps, while experiencing visual social stressors, the smaller male uses an opportunistic strategy, acting like a subordinate male while maintaining the physiology of a dominant male

    Aligning Leadership Across Systems and Organizations to Develop a Strategic Climate for Evidence-Based Practice Implementation

    No full text
    There has been a growing impetus to bridge the gap between basic science discovery, development of evidence-based practices (EBPs), and the availability and delivery of EBPs in order to improve the public health impact of such practices. To capitalize on factors that support implementation and sustainment of EBPs, it is important to consider that health care is delivered within the outer context of public health systems and the inner context of health care organizations and work groups. Leaders play a key role in determining the nature of system and organizational contexts. This article addresses the role of leadership and actions that leaders can take at and across levels in developing a strategic climate for EBP implementation within the outer (i.e., system) and inner (i.e., organization, work group) contexts of health care. Within the framework of Edgar Schein's "climate embedding mechanisms," we describe strategies that leaders at the system, organization, and work group levels can consider and apply to develop strategic climates that support the implementation and sustainment of EBP in health care and allied health care settings

    Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium

    No full text
    Previously, our study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate (PIP3) and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression

    Prohibitin protects against oxidative stress-induced cell injury in cultured neonatal cardiomyocyte

    No full text
    Oxidative stress is one of the main causes of myocardial injury, which is associated with cardiomyocyte death. Mitochondria play a key role in triggering the necrosis and apoptosis pathway of cardiomyocytes under oxidative stress. Although prohibitin (PHB) has been acknowledged as a mitochondrial chaperone, its functions in cardiomyocytes are poorly characterized. The present research was designed to investigate the cardioprotective role of PHB in mitochondria. Oxidative stress can increase the PHB content in mitochondria in a time-dependent manner. Overexpression of PHB in cultured cardiomyocytes by transfection of recombinant adenovirus vector containing PHB sense cDNA resulted in an increase of PHB in mitochondria. Compared with the non-transfection cardiomyocytes, PHB overexpression could protect the mitochondria from oxidative stress-induced injury. The mitochondria-mediated apoptosis pathway was consistently suppressed in PHB-overexpressed cardiomyocytes after hydrogen peroxide (H2O2) treatment, including a reduced change in mitochondrial membrane permeability transition and an inhibited release of cytochrome c from mitochondria to cytoplasma. As a result, the oxidative stress-induced cardiomyocyte apoptosis was suppressed. These data indicated that PHB protected the cardiomyocytes from oxidative stress-induced damage, and that increasing PHB content in mitochondria constituted a new therapeutic target for myocardium injury
    corecore