331 research outputs found

    Transcriptomic Characterization of a Synergistic Genetic Interaction during Carpel Margin Meristem Development in Arabidopsis thaliana

    Get PDF
    In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM). The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM) and GROWTH-REGULATING FACTOR (GRF) families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation

    Effects of tv time and other sedentary pursuits

    Full text link
    Television (TV) viewing is the dominant recreational pastime at all ages, especially for children and adolescents. Many studies have shown that higher TV viewing hours are associated with higher body mass index (BMI), lower levels of fitness and higher blood cholesterol levels. Although the effect size estimated from observational studies is small (with TV viewing explaining very little of the variance in BMI), the results of intervention studies show large effect sizes. The potential mediators of the effect of higher TV viewing on higher BMI include less time for physical activity, reduced resting metabolic rate (for which there is little supporting evidence) and increased energy intake (from more eating while watching TV and a greater exposure to marketing of energy dense foods). Electronic games may have an effect on unhealthy weight gain, but are less related to increased energy intake and their usage is relatively new, making effect size difficult to determine. Thus, TV viewing does not explain much of the differences in body size between individuals or the rise in obesity over time, perhaps because of the uniformly high, but relatively stable, TV viewing hours. Reducing TV viewing hours is a difficult prospect because potential actions, such as social marketing and education, are likely to be relatively weak interventions, although the evidence would suggest that, if viewing could be reduced, it could have a significant impact on reducing obesity prevalence. Regulations to reduce the heavy marketing of energy dense foods and beverages on TV may be the most effective public health measure available to minimize the impact of TV viewing on unhealthy weight gain.<br /

    Vernonia cinerea Less. supplementation and strenuous exercise reduce smoking rate: relation to oxidative stress status and beta-endorphin release in active smokers

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The aim of this study was to evaluate the effects of <it>Vernonia cinerea </it>Less. (VC) supplementation and exercise on oxidative stress biomarkers, beta-endorphin release, and the rate of cigarette smoking.</p> <p>Methods</p> <p>Volunteer smokers were randomly divided into four groups: group 1: VC supplement; group 2: exercise with VC supplement; group 3: exercise; and group 4: control. VC was prepared by wash and dry techniques and taken orally before smoking, matching the frequency of strenuous exercise (three times weekly). Before and after a two month period, exhaled carbon monoxide (CO), blood oxidative stress (malondialdehyde [MDA], nitric oxide [NOx], protein hydroperoxide [PrOOH] and total antioxidant capacity [TAC]), beta-endorphin and smoking rate were measured, and statistically analyzed.</p> <p>Results</p> <p>In Group 1, MDA, PrOOH, and NOx significantly decreased, whereas TAC increased (p < 0.05). In Group 2, MDA and PrOOH decreased (p < 0.05), with no other changes noted (p > 0.05). In Group 3, MDA, PrOOH, NOx, TAC, and beta-endorphin levels increased significantly (p < 0.05). Group 4 showed no change in oxidative stress variables or beta-endorphine levels (p > 0.05). All groups had lower levels of CO after the intervention. The smoking rate for light cigarette decreased in group 2(62.7%), 1(59.52%), 3 (53.57%) and 4(14.04%), whereas in self-rolled cigarettes it decreased in group 1 (54.47%), 3 (42.30%), 2 (40%) and 4 (9.2%).</p> <p>Conclusion</p> <p>Supplementation with <it>Vernonia cinerea </it>Less and exercise provided benefit related to reduced smoking rate, which may be related to oxidaive stress and beta-endorphine levels.</p

    Comprehensive Analysis Reveals Dynamic and Evolutionary Plasticity of Rab GTPases and Membrane Traffic in Tetrahymena thermophila

    Get PDF
    Cellular sophistication is not exclusive to multicellular organisms, and unicellular eukaryotes can resemble differentiated animal cells in their complex network of membrane-bound structures. These comparisons can be illuminated by genome-wide surveys of key gene families. We report a systematic analysis of Rabs in a complex unicellular Ciliate, including gene prediction and phylogenetic clustering, expression profiling based on public data, and Green Fluorescent Protein (GFP) tagging. Rabs are monomeric GTPases that regulate membrane traffic. Because Rabs act as compartment-specific determinants, the number of Rabs in an organism reflects intracellular complexity. The Tetrahymena Rab family is similar in size to that in humans and includes both expansions in conserved Rab clades as well as many divergent Rabs. Importantly, more than 90% of Rabs are expressed concurrently in growing cells, while only a small subset appears specialized for other conditions. By localizing most Rabs in living cells, we could assign the majority to specific compartments. These results validated most phylogenetic assignments, but also indicated that some sequence-conserved Rabs were co-opted for novel functions. Our survey uncovered a rare example of a nuclear Rab and substantiated the existence of a previously unrecognized core Rab clade in eukaryotes. Strikingly, several functionally conserved pathways or structures were found to be associated entirely with divergent Rabs. These pathways may have permitted rapid evolution of the associated Rabs or may have arisen independently in diverse lineages and then converged. Thus, characterizing entire gene families can provide insight into the evolutionary flexibility of fundamental cellular pathways

    Soluble Rhesus Lymphocryptovirus gp350 Protects against Infection and Reduces Viral Loads in Animals that Become Infected with Virus after Challenge

    Get PDF
    Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans

    Proteasome Activator Enhances Survival of Huntington's Disease Neuronal Model Cells

    Get PDF
    In patients with Huntington's disease (HD), the proteolytic activity of the ubiquitin proteasome system (UPS) is reduced in the brain and other tissues. The pathological hallmark of HD is the intraneuronal nuclear protein aggregates of mutant huntingtin. We determined how to enhance UPS function and influence catalytic protein degradation and cell survival in HD. Proteasome activators involved in either the ubiquitinated or the non-ubiquitinated proteolysis were overexpressed in HD patients' skin fibroblasts or mutant huntingtin-expressing striatal neurons. Following compromise of the UPS, overexpression of the proteasome activator subunit PA28γ, but not subunit S5a, recovered proteasome function in the HD cells. PA28γ also improved cell viability in mutant huntingtin-expressing striatal neurons exposed to pathological stressors, such as the excitotoxin quinolinic acid and the reversible proteasome inhibitor MG132. These results demonstrate the specific functional enhancements of the UPS that can provide neuroprotection in HD cells

    Transcription profiling of lung adenocarcinomas of c-myc-transgenic mice: Identification of the c-myc regulatory gene network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcriptional regulator c-Myc is the most frequently deregulated oncogene in human tumors. Targeted overexpression of this gene in mice results in distinct types of lung adenocarcinomas. By using microarray technology, alterations in the expression of genes were captured based on a female transgenic mouse model in which, indeed, c-Myc overexpression in alveolar epithelium results in the development of bronchiolo-alveolar carcinoma (BAC) and papillary adenocarcinoma (PLAC). In this study, we analyzed exclusively the promoters of induced genes by different in silico methods in order to elucidate the c-Myc transcriptional regulatory network.</p> <p>Results</p> <p>We analyzed the promoters of 361 transcriptionally induced genes with respect to c-Myc binding sites and found 110 putative binding sites in 94 promoters. Furthermore, we analyzed the flanking sequences (+/- 100 bp) around the 110 c-Myc binding sites and found Ap2, Zf5, Zic3, and E2f binding sites to be overrepresented in these regions. Then, we analyzed the promoters of 361 induced genes with respect to binding sites of other transcription factors (TFs) which were upregulated by c-Myc overexpression. We identified at least one binding site of at least one of these TFs in 220 promoters, thus elucidating a potential transcription factor network. The analysis correlated well with the significant overexpression of the TFs Atf2, Foxf1a, Smad4, Sox4, Sp3 and Stat5a. Finally, we analyzed promoters of regulated genes which where apparently not regulated by c-Myc or other c-Myc targeted TFs and identified overrepresented Oct1, Mzf1, Ppargamma, Plzf, Ets, and HmgIY binding sites when compared against control promoter background.</p> <p>Conclusion</p> <p>Our in silico data suggest a model of a transcriptional regulatory network in which different TFs act in concert upon c-Myc overexpression. We determined molecular rules for transcriptional regulation to explain, in part, the carcinogenic effect seen in mice overexpressing the c-Myc oncogene.</p
    corecore