33 research outputs found

    Using a virtual environment to assess cognition in the elderly

    Get PDF
    YesEarly diagnosis of Alzheimer’s disease (AD) is essential if treatments are to be administered at an earlier point in time before neurons degenerate to a stage beyond repair. In order for early detection to occur tools used to detect the disorder must be sensitive to the earliest of cognitive impairments. Virtual reality (VR) technology offers opportunities to provide products which attempt to mimic daily life situations, as much as is possible, within the computational environment. This may be useful for the detection of cognitive difficulties. We develop a virtual simulation designed to assess visuospatial memory in order to investigate cognitive function in a group of healthy elderly participants and those with a mild cognitive impairment. Participants were required to guide themselves along a virtual path to reach a virtual destination which they were required to remember. The preliminary results indicate that this virtual simulation has the potential to be used for detection of early AD since significant correlations of scores on the virtual environment with existing neuropsychological tests were found. Furthermore, the test discriminated between healthy elderly participants and those with a mild cognitive impairment (MCI)

    Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires

    Get PDF
    peer-reviewedBackground: Leptin modulates appetite, energy expenditure and the reproductive axis by signalling via its receptor the status of body energy stores to the brain. The present study aimed to quantify the associations between 10 novel and known single nucleotide polymorphisms in genes coding for leptin and leptin receptor with performance traits in 848 Holstein-Friesian sires, estimated from performance of up to 43,117 daughter-parity records per sire. Results: All single nucleotide polymorphisms were segregating in this sample population and none deviated (P > 0.05) from Hardy-Weinberg equilibrium. Complete linkage disequilibrium existed between the novel polymorphism LEP-1609, and the previously identified polymorphisms LEP-1457 and LEP-580. LEP-2470 associated (P < 0.05) with milk protein concentration and calf perinatal mortality. It had a tendency to associate with milk yield (P < 0.1). The G allele of LEP-1238 was associated (P < 0.05) with reduced milk fat concentration, reduced milk protein concentration, longer gestation length and tended to associate (P < 0.1) with an increase in calving difficulty, calf perinatal mortality and somatic cells in the milk. LEP-963 exhibited an association (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and gestation length. It also tended to associate with milk yield (P < 0.1). The R25C SNP associated (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and length of gestation. The T allele of the Y7F SNP significantly associated with reduced angularity (P < 0.01) and reduced milk protein yield (P < 0.05). There was also a tendency (P < 0.1) for Y7F to associate with increased body condition score, reduced milk yield and shorter gestation (P < 0.1). A80V associated with reduced survival in the herd (P < 0.05). Conclusions Several leptin polymorphisms (LEP-2470, LEP-1238, LEP-963, Y7F and R25C) associated with the energetically expensive process of lactogenesis. Only SNP Y7F associated with energy storage. Associations were also observed between leptin polymorphisms and calving difficulty, gestation length and calf perinatal mortality. The lack of an association between the leptin variants investigated with calving interval in this large data set would question the potential importance of these leptin variants, or indeed leptin, in selection for improved fertility in the Holstein-Friesian dairy cow.Department of Agriculture, Food and Fisheries, Ireland - Research Stimulus Fund (RSF-06-0353; RSF-06-0409); Irish Dairy Research Trust; Teagasc Walsh Fellowshi

    The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)

    Get PDF
    Much of our knowledge of the drivers of immune variation, and how these responses vary over time, comes from humans, domesticated livestock or laboratory organisms. While the genetic basis of variation in immune responses have been investigated in these systems, there is a poor understanding of how genetic variation influences immunity in natural, untreated populations living in complex environments. Here, we examine the genetic architecture of variation in immune traits in the Soay sheep of St Kilda, an unmanaged population of sheep infected with strongyle gastrointestinal nematodes. We assayed IgA, IgE and IgG antibodies against the prevalent nematode Teladorsagia circumcincta in the blood plasma of > 3,000 sheep collected over 26 years. Antibody levels were significantly heritable (h2 = 0.21 to 0.57) and highly stable over an individual’s lifespan. IgA levels were strongly associated with a region on chromosome 24 explaining 21.1% and 24.5% of heritable variation in lambs and adults, respectively. This region was adjacent to two candidate loci, Class II Major Histocompatibility Complex Transactivator (CIITA) and C-Type Lectin Domain Containing 16A (CLEC16A). Lamb IgA levels were also associated with the immunoglobulin heavy constant loci (IGH) complex, and adult IgE levels and lamb IgA and IgG levels were associated with the major histocompatibility complex (MHC). This study provides evidence of high heritability of a complex immunological trait under natural conditions and provides the first evidence from a genome-wide study that large effect genes located outside the MHC region exist for immune traits in the wild

    SPIRA: an automatic system to support lower limb injury assessment

    No full text
    Lower limb injuries, especially those related to the knee joint, are some of the most common and severe injuries among sport practitioners. Consequently, a growing interest in the identification of subjects with high risk of injury has emerged during last years. One of the most commonly used injury risk factor is the measurement of joint angles during the execution of dynamic movements. To that end, techniques such as human motion capture and video analysis have been widely used. However, traditional procedures to measure joint angles present certain limitations, which makes this practice not practical in common clinical settings. This work presents SPIRA, a novel 2D video analysis system directed to support practitioners during the evaluation of joint angles in functional tests. The system employs an infrared camera to track retro-reflective markers attached to the patient’s body joints and provide a real-time measurement of the joint angles in a cost-and-time-effective way. The information gathered by the sensor is processed and managed through a computer application that guides the expert during the execution of the tests and expedites the analysis of the results. In order to show the potential of the SPIRA system, a case study has been conducted, performing the analysis with the both the proposed system and a gold-standard in 2D offline video analysis. The results (ICC(ρ) = 0.996) reveal a good agreement between both tools and prove the reliability of SPIRA
    corecore