24 research outputs found

    The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections

    Get PDF
    Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013 The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration

    Genome-wide <i>in vivo</i> screen identifies novel host regulators of metastatic colonisation

    Get PDF
    Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment ('host', which includes stromal cells and the immune system). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth ('colonization') being critical in determining metastatic outcome. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden.status: publishe

    Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes from cyanobacteria

    Get PDF
    In cyanobacteria, solubilization of thylakoid membranes by detergents yields both monomeric and trimeric Photosystem I (PS I) complexes in variable amounts. We present evidence for the existence of both monomeric and trimeric PSI in cyanobacterial thylakoid membranes with the oligomeric state depending 'in vitro' on the ion concentration. At low salt concentrations (i.e. ≤ 10 mM MgSO4) PSI is mainly extracted as a trimer from these membranes and at high salt concentrations (i.e. ≥ 150 mM MgSO4) nearly exclusively as a monomer, irrespective of the type of salt used (i.e. mono- or bivalent ions) and the temperature (i.e. 4 °C or 20 °C). Once solubilized, the PSI trimer is stable over a wide range of ion concentrations (i.e. beyond 0.5 M). A model is presented which suggests a monomer-oligomer equilibrium of PS I, but also of PS II and the cyt. b6/f-complex in the cyanobacterial thylakoid membrane. The possible physiological role of this equilibrium in the regulation of state transitions is discussed.
    corecore