5,322 research outputs found

    A Comparison of Laser Ultrasonics and EMAT Texture Measurements in Aluminum Alloys

    Get PDF
    Ultrasonic techniques, which measure elastic anisotropy, have been used to study texture and plastic anisotropy of sheet materials. Ultrasonic velocity measurements can determine the orientation distribution coefficients (ODCs) W400, W420, and W440 which are used to describe crystallographic orientation distributions [1]. For steel sheets, strong correlations have been observed between ultrasonic velocity and the formability parameters r̄ and Δr [3]. The results for aluminum show a relationship between the ODC W440 and the degree of earing [2–3].</p

    Optimized Anchor-Modified Peptides Targeting Mutated RAS Are Promising Candidates for Immunotherapy

    Get PDF
    RAS mutations occur in approximately 20% of all cancers and given their clonality, key role as driver mutation, association with poor prognosis and undruggability, they represent attractive targets for immunotherapy. We have identified immunogenic peptides derived from codon 12 mutant RAS (G12A, G12C, G12D, G12R, G12S and G12V), which bind to HLA-A*02:01 and HLA-A*03:01 and elicit strong peptide-specific CD8+ T cell responses, indicating that there is an effective CD8+ T-cell repertoire against these mutant RAS-derived peptides that can be mobilized. Alterations in anchor residues of these peptides enhanced their binding affinity to HLA-A*02:01 molecules and allowed generation of CD8+ T cells that responded to target cells pulsed with the anchor-modified and also with the original peptide. Cytotoxic T cells generated against these peptides specifically lysed tumor cells expressing mutant RAS. Vaccination of transgenic humanized HLA-A2/DR1 mice with a long peptide encompassing an anchor-modified 9-mer G12V epitope generated CD8+ T cells reactive to the original 9-mer and to a HLA-A*02:01-positive human cancer cell line harboring the G12V mutation. Our data provide strong evidence that mutant RAS can be targeted by immunotherapy

    Tracing Noble Gas Radionuclides in the Environment

    Full text link
    Trace analysis of radionuclides is an essential and versatile tool in modern science and technology. Due to their ideal geophysical and geochemical properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269 yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been recognized to have a wide range of important applications in Earth sciences. In recent years, significant progress has been made in the development of practical analytical methods, and has led to applications of these isotopes in the hydrosphere (tracing the flow of groundwater and ocean water). In this article, we introduce the applications of these isotopes and review three leading analytical methods: Low-Level Counting (LLC), Accelerator Mass Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA)

    An epidemiologic study of early biologic effects of benzene in Chinese workers.

    Get PDF
    Benzene is a recognized hematotoxin and leukemogen, but its mechanisms of action in humans are still uncertain. To provide insight into these processes, we carried out a cross-sectional study of 44 healthy workers currently exposed to benzene (median 8-hr time-weighted average; 31 ppm), and unexposed controls in Shanghai, China. Here we provide an overview of the study results on peripheral blood cells levels and somatic cell mutation frequency measured by the glycophorin A (GPA) gene loss assay and report on peripheral cytokine levels. All peripheral blood cells levels (i.e., total white blood cells, absolute lymphocyte count, platelets, red blood cells, and hemoglobin) were decreased among exposed workers compared to controls, with the exception of the red blood cell mean corpuscular volume, which was higher among exposed subjects. In contrast, peripheral cytokine levels (interleukin-3, interleukin-6, erythropoietin, granulocyte colony-stimulating factor, tissue necrosis factor-alpha) in a subset of the most highly exposed workers (n = 11) were similar to values in controls (n = 11), suggesting that benzene does not affect these growth factor levels in peripheral blood. The GPA assay measures stem cell or precursor erythroid cell mutations expressed in peripheral red blood cells of MN heterozygous subjects, identifying NN variants, which result from loss of the GPA M allele and duplication of the N allele, and N phi variants, which arise from gene inactivation. The NN (but not N phi) GPA variant cell frequency was elevated in the exposed workers compared with controls (mean +/- SD, 13.9 +/- 8.4 mutants per million cells versus 7.4 +/- 5.2 per million cells, (respectively; p = 0.0002), suggesting that benzene produces gene-duplicating but not gene-inactivating mutations at the GPA locus in bone marrow cells of exposed humans. These findings, combined with ongoing analyses of benzene macromolecular adducts and chromosomal aberrations, will provide an opportunity to comprehensively evaluate a wide range of early biologic effects associated with benzene exposure in humans

    Ultrasonic Monitoring of Recrystallization Textures in Aluminum

    Get PDF
    The present paper is an attempt to use ultrasonic velocity measurements to characterize the texture of an aluminum-magnesium alloy (Al 5xxx) and to compare the results with orientation imaging microscopy (OIM) results. The results are characterized in terms of three orientation distribution coefficients (ODC’s), W400, W420, and W440, each of which describes a particular forming anisotropy, and each of which has significant impact on the final products

    Interaction of perceptual grouping and crossmodal temporal capture in tactile apparent-motion

    Get PDF
    Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can &quot;capture'' visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left-or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from -75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs-one short (75 ms), one long (325 ms)-were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects

    Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions

    Get PDF
    In contrast to classical physics, quantum mechanics divides particles into two classes-bosons and fermions-whose exchange statistics dictate the dynamics of systems at a fundamental level. In two dimensions quasi-particles known as 'anyons' exhibit fractional exchange statistics intermediate between these two classes. The ability to simulate and observe behaviour associated to fundamentally different quantum particles is important for simulating complex quantum systems. Here we use the symmetry and quantum correlations of entangled photons subjected to multiple copies of a quantum process to directly simulate quantum interference of fermions, bosons and a continuum of fractional behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2% between an ideal model and experimental observation. The approach generalises to an arbitrary number of particles and is independent of the statistics of the particles used, indicating application with other quantum systems and large scale application.Comment: 10 pages, 5 figure

    Exploring 4D Quantum Hall Physics with a 2D Topological Charge Pump

    Get PDF
    The discovery of topological states of matter has profoundly augmented our understanding of phase transitions in physical systems. Instead of local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example thereof is the two-dimensional integer quantum Hall effect. It is characterized by the first Chern number which manifests in the quantized Hall response induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional systems leads to the appearance of a novel non-linear Hall response that is quantized as well, but described by a 4D topological invariant - the second Chern number. Here, we report on the first observation of a bulk response with intrinsic 4D topology and the measurement of the associated second Chern number. By implementing a 2D topological charge pump with ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small atom cloud as a local probe, we fully characterize the non-linear response of the system by in-situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probe higher-dimensional quantum Hall systems, where new topological phases with exotic excitations are predicted

    Calculating Unknown Eigenvalues with a Quantum Algorithm

    Full text link
    Quantum algorithms are able to solve particular problems exponentially faster than conventional algorithms, when implemented on a quantum computer. However, all demonstrations to date have required already knowing the answer to construct the algorithm. We have implemented the complete quantum phase estimation algorithm for a single qubit unitary in which the answer is calculated by the algorithm. We use a new approach to implementing the controlled-unitary operations that lie at the heart of the majority of quantum algorithms that is more efficient and does not require the eigenvalues of the unitary to be known. These results point the way to efficient quantum simulations and quantum metrology applications in the near term, and to factoring large numbers in the longer term. This approach is architecture independent and thus can be used in other physical implementations
    corecore