13 research outputs found

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    An observational cohort study to produce and evaluate an improved tool to screen older women with back pain for osteoporotic vertebral fractures (Vfrac): study protocol.

    Get PDF
    The aim of this study is to produce an easy to use checklist for general practitioners to complete whenever a woman aged over 65 years with back pain seeks healthcare. This checklist will produce a binary output to determine if the patient should have a radiograph to diagnose vertebral fracture. PURPOSE: People with osteoporotic vertebral fractures are important to be identified as they are at relatively high risk of further fractures. Despite this, less than a third of people with osteoporotic vertebral fractures come to clinical attention due to various reasons including lack of clear triggers to identify who should have diagnostic spinal radiographs. This study aims to produce and evaluate a novel screening tool (Vfrac) for use in older women presenting with back pain in primary care based on clinical triggers and predictors identified previously. This tool will generate a binary output to determine if a radiograph is required. METHODS: The Vfrac study is a two-site, pragmatic, observational cohort study recruiting 1633 women aged over 65 years with self-reported back pain. Participants will be recruited from primary care in two sites. The Vfrac study will use data from two self-completed questionnaires, a simple physical examination, a lateral thoracic and lateral lumbar radiograph and information contained in medical records. RESULTS: The primary objective is to develop an easy-to-use clinical screening tool for identifying older women who are likely to have vertebral fractures. CONCLUSIONS: This article describes the protocol of the Vfrac study; ISRCTN16550671

    Aspects of GRMHD in high-energy astrophysics: geometrically thick disks and tori agglomerates around spinning black holes

    No full text

    Molecular chaperones in cellular protein folding

    No full text
    corecore