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Abstract We examine the stability of Einstein-Maxwell perfect fluid configurations with a
privileged radial direction by means of a 1+1+2-tetrad formalism. We use this formalism
to cast in a quasilinear symmetric hyperbolic form the equations describing the evolution
of the system. This hyperbolic reduction is used to discuss the stability of linear perturba-
tions in some special cases. By restricting the analysis to isotropic fluid configurations, we
assume a constant electrical conductivity coefficient for the fluid. As a result of this analy-
sis we provide a complete classification and characterization of various stable and unstable
configurations. We find, in particular, that in many cases the stability conditions are strongly
determined by the constitutive equations and the electric conductivity. A threshold for the
emergence of the instability appears in both contracting and expanding systems.

Keywords locally rotationally symmetric solutions · 1 + 1 + 2-formalism · linear
perturbations · stability · magnetohydrodynamics

1 Introduction

The stability problem of plasma configurations is an important issue in a variety of astro-
physical scenarios involving, for example, stellar objects and accretion disks. Various phe-
nomena of high-energy astrophysics are related to accretion disks with unstable processes
such as accretion or jet emission. In this article we consider the situation where gravity plays
a decisive role in determining both the equilibrium states of the configurations and the dy-
namical phases associated instability so that a full general relativistic analysis is required
—see [1,2,3,4,5,6,7,8,9]. These systems are described by the coupled Einstein-Maxwell-
Euler equations. A notable example of this type of configurations is given by general rel-
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ativistic (GR) magnetohydrodynamic (MHD) systems. Given the complexity of the equa-
tions, the analysis of perturbations in this type of systems must be conducted with suitable
assumptions on the symmetries for the system (for example in toroidal accretion disks). In
order to discuss dynamic situations numerical approaches are often required. A major chal-
lenge in dealing with these systems is to find an appropriate formulation of the problem:
on the one hand one requires a formulation adapted to the symmetries of the configuration
and, on the other hand, a suitable formulation of an initial value problem is necessary for
the construction of the numerical solutions so as to ensure local and global existence and the
analysis of the stability of certain reference solutions [10,11,12,13,14,6,15,8,9,7].

In this work we explore the stability properties of systems with a preferred radial direc-
tion (from now on, for simplicity, the “radial direction”) governed by the Einstein-Maxwell-
Euler equations casted in a quasi-symmetric hyperbolic form. The procedure of hyperbolic
reduction used in the present article follows the presentation given in [16]. Our analysis is
based on an adapted 1+ 1+ 2-tetrad formalism [17]. This formalism is adapted to the de-
scription of a general locally rotationally symmetric system (LRS), a remarkable example
of which is given by the simple case of spherically symmetric configurations [17] —for a
more specific discussion on the stability of spherically symmetric plasma see, for example,
[18,19,20,21,22,23]. This formalism is an extension of the usual 1+3-formalism in which
the existence of a privileged timelike vector field ua is assumed —in applications involving
the description of fluids, it is natural to let ua to follow the congruence generated by the fluid
[25]. In the 1+1+2-formalism the presence of a further (spatial) vector field na is assumed.
Further discussion on the decomposition of Einstein-Maxwell-perfect fluid equations can be
found in [17,24,36]. In [21], the same formalism has been used to analyze self gravitating
spherically symmetric charged perfect fluid configurations in hydrostatic equilibrium. De-
tails on the 1+3 and 1+1+2-decompositions of the Einstein-Maxwell (EM) equations in
LRS spacetimes can be found in [26,27,28].

In this article we consider perturbations of the metric tensor and of the matter and EM
fields. All the quantities share the same preferred radial direction, as in the locally rota-
tionally symmetric classes II space-times as described in [17] 1. We focus our attention to
the special case of an infinitely conducting plasma which describes an adiabatic flow so
that the entropy per particle is conserved along the flow lines. In particular, we investigate
stability for systems with a magnetic field but without dissipative effects. A central aspect
of the stability analysis undertaken in this article is the construction of a quasilinear sym-
metric hyperbolic evolution system for the variables describing the configuration. This, in
turn, ensures the well-posedness of the Cauchy problem for the system —in other words,
the local existence and uniqueness of solutions for the Einstein-Maxwell-Euler equations.
By prescribing suitable initial data on an initial hypersurface, a unique solution exists in a
neighborhood of that hypersurface. This solution depends continuously on the initial data.
Accordingly, we first write the evolution equations for the independent components of n
variables collected in a n-dimensional vector v used to obtain a suitable symmetric hyper-
bolic evolution system of the form At∂tv−A j∂ jv = Bv, where At and A j and B are smooth
matrix valued functions of the coordinates (t,x) and the variables v with the index j asso-

1 We refer to [21,17,24,36,26,29,30] for a general discussion concerning the configurations with a unique
radial direction described by the Einstein-Maxwell-Euler system. We mention also the well-known solution
of a toroidal magnetic field widely used in the axes-symmetric accretion configurations [32], and [31] for a
discussion on the case of a poloidal magnetic field where a metric representation is adapted to the direction
of the field, as proved by Bekenstein & Oron [33,34]. For a deeper and more general discussion about MHD
configurations in spherical symmetry, see for example [18,19,20,21,22,23].
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ciated to some spatial coordinates x. The system is symmetric hyperbolic if the matrices At

and A j are symmetric and if At is a positive-definite matrix.
In our analysis we take into account gravito-electromagnetic (GEM) effects and we pro-

vide a complete classification of the solutions in terms of the scalars of the conformal Weyl
tensor. We consider electromagnetic fields described by real vector functions —notice, how-
ever, that in the discussion of LSR spacetimes in [24,36,26,29,30] it is often natural to make
use of the complex variables ψ = E + iB and ψ∗ = E− iB to decouple the equations with
the appropriate symmetries and obtain linear equations in the fields. The resulting evolution
system is then used to analyze the stability problem for small non-linear perturbations of a
background solution. More precisely, we perform a first order perturbation to v of the form
v 7→ ε v̊+ v̆, where the parameter ε sets the order of the perturbation while v̆ describes the
(linear) perturbation of the background solution. Now, assuming the background variables
v̊ to satisfy the evolutions we end up with an evolution system for the perturbations of the
form Åt∂t v̆− Å j∂ jv̆ = B̊v̆. The core of the stability analysis consists of the study of the
term B̊ using some relaxed stability eigenvalue conditions. The procedure to analyse stabil-
ity used here is adapted from [38] —see also discussion in [39] and cited references. Under
suitable circumstances it can be regarded as a first step toward the analysis of non-linear
stability. In our case, the elements of the matrix B̊ are, in general, functions of the space
and time coordinates. For a general discussion on the time dependent case and the case
of non-constant matrix coefficients (depending on both time and space) we refer to [38].
The case of a linearized system where the coefficients are constant matrices is discussed in
[40]. Finally, the case of systems with vanishing eigenvalues has been discussed in [41,42,
43]. In our case, a full analysis of the stability properties of the system turns out extremely
cumbersome because of the form of the matrix B̊ associated to the present problem. Thus,
we analyse of the signs of the eigenvalues using indirect methods based on the inspection
of the characteristic polynomial. In order to keep the problem manageable, we analyze a
number of simplified systems obtained by making some assumptions about the configura-
tion. We provide a detailed classification by considering systems with particular kinematic
configurations.

The present article is structured as follows: variables and equations are introduced in
Section 2. Section 3 discusses the first order perturbations of the variables. Section 3.1 pro-
vides some general remarks on the set of perturbed equations and the stability of the system.
Section 4 contains the main results concerning the linear stability of the symmetric hyper-
bolic system. Some concluding remarks are given in Section 5. Further details on the sub-
classes of the solutions are in Appendix A. Finally in Appendix B we provide some remarks
concerning the thermodynamic quantities.

2 Variables and equations

In the sequel we consider the stability problem for a configuration described by the Einstein-
Maxwell-Euler equations for a perfect fluid with a preferred radial direction. By applying a
1+ 1+ 2 decomposition we can take full advantage of the symmetries of the LRS system.
This procedure allows to construct in an easy and relatively immediate manner a quasi-
linear hyperbolic system. This property ensures also the consistency of possible numerical
approaches without requiring the introduction of any auxiliary variable to handle both the
propagation equations along the timelike direction and the constraint part of the system.
Moreover, the covariant and gauge-invariant perturbation formalisms are especially suitable
for dealing with spacetimes with some preferred spatial direction by introducing a radial



4 D. Pugliese, J. A. Valiente Kroon

unit vector and decomposing all covariant quantities with respect to the latter [17,24,44,
12]. All the equations and the quantities related to the fields and the curvature tensors are
decomposed according to the 1+1+2 procedure.

The implementation of the 1+3-formalism used in the present article follows, as much
as possible, the notation and conventions of [25] while for the 1+1+2-formalism we refer to
[17]. We consider 4-dimensional metrics gab with signature (−,+,+,+). The Latin indices
a,b,c... will denote spacetime tensorial indices taking the values (0,1,2,3) while i, j,k...
will correspond to spatial frame indices ranging over (1,2,3). The Levi-Civita covariant
derivative of gab will be denoted by ∇a where ∇agbc = gbc;a = 0. The timelike vector field
(flow vector) ua will describe the normalised future directed 4-velocity of the fluid, uaua =
−1. Indices are raised and lowered with gab. The tensor hab ≡ gab + uaub is the projector
onto the three dimensional subspace orthogonal to ua, and na denotes a spacelike normalized
vector chosen along a preferred direction of the spacetime. Therefore, one has that nana = 1,
uana = 0 and a further projection tensor Nb

a ≡ hb
a− nanb = δ b

a + uaub− nanb. In general,
Q̇ ≡ ub∇bQ for any quantity Q, while φ̂ c···d

a···b ≡ neDeφ c···d
a···b for a tensor φ , where the

operator Da corresponds to the 3-dimensional covariant derivative obtained from projecting
the spacetime covariant derivative in the distribution orthogonal to ub. Thus, for a generic
2-rank tensor Tbc one has that DaTbc = hs

aht
bhp

cTst;p. We perform the projection of any
quantity along the radial direction na. Our analysis leads to a symmetric hyperbolic system
consisting of eleven evolution equations for eleven scalar variables of the form At∂tv−
A j∂ jv = Bv, for a vector-valued unknown with components given by

v≡
(
ρ,E,B,E ,B,Q,T,ξ ,Φ ,Ω ,A

)
, (1)

where Eana = E and Bana = B with (Ea,Bb) the electric and magnetic fields, Ja is the 4–
current and j = Jana. The scalars E and B denote, respectively, the totally projected electric
and magnetic parts of the Weyl curvature tensor of the metric gab. We introduce the variables
Q and T via the relations Q≡ T +3Σ , T ≡ 2

3Θ −Σ so that Σ = 1
3 (Q−T ), Θ = 3

2 (T +Σ),
where the scalar Σ is the totally projected part of the shear of the 3-sheet and Θ is the volume
expansion scalar. The scalar Φ denotes is the expansion of the 2–sheet generated by na, and
ξ is the rotation of na (i.e. the twist of the 2–sheet). Then, A ≡ naub∇bua and Ω describe the
components of the acceleration and the vorticity in the direction of na, respectively. Finally,
ρ is the matter density and p is the pressure. The evolution equations are

ρ̇−E j+
3
2
(p+ρ)

(1
3
(Q−T )+T

)
= 0, (2)

Ė−2Bξ +ET + j = 0, (3)

Ḃ+BT +2Eξ = 0, (4)

Ė −3Bξ +
1
2
(B2 +E2)T +

3
2
E T +

2
3

E j+
1
6
(p+ρ)(Q−T ) = 0,

Ḃ+
3
2
BT +3E ξ +(B2 +E2)ξ = 0, (5)

Φ̇−A T −2ξ Ω +
1
2

T Φ = 0, (6)

ξ̇ −A Ω +
1
2
(ξ T +ΦΩ −B) = 0, (7)

Ω̇ −A ξ +T Ω = 0. (8)
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Now, assuming p = p(ρ) and introducing the square of the velocity of sound vs ≡ ∂ p/∂ρ

and the charge density ρ̃C, the evolution equations for T , Q and A are

Ṫ −A Φ−E + p+
1
3

ρ +
1
2

T 2−2Ω
2 = 0, (9)

Q̇−2 ˆA −2A 2 +B2 +E2 +2E + p+
1
3

ρ +
1
2

Q2 = 0, (10)

4 ˙A

vs
−2Q̂+

4E ĵ
p+ρ

− 4E ˙̃ρC

vs(p+ρ)
− 2

vs(p+ρ)

(
A
[
Q(vs−1)+2T vs

]
(p+ρ)

−2A E j(1+2vs)+ ρ̃C
[
EQ(2+ vs)+2(ET vs +2Bξ )

]
+vs(p+ρ)

[
Φ(Q−T )+4ξ Ω

]
−2 j

[
ρ̃C(1+ vs)+ vs(2BΩ −EΦ)

])
= 0. (11)

Moreover, one finds that

B−3A ξ +(2A −Φ)Ω = 0.

In equation (11) the equation of state and the constraint equation have been used to ob-
tain a simpler expression. In fact, the fields p and ρ̃C can be regarded as functions of ρ ,
while the charge current jc is regarded as a function of the electric field E. Consistent with
Ohm’s law, we assume a linear relation between the conduction current ja and the electric
field. More precisely, we set ja = σabEb, where σab denotes the conductivity of the fluid
(plasma). We will restrict our attention to isotropic fluids for which σab = σJgab, so that
Ja = ρ̃Cua +σJEa, with σJ the electrical conductivity coefficient. In terms of a 1+ 1+ 2-
decomposition one has ja = EσJna. The system (2)-(8) is complemented by the constraint
equations for the components of the vector-valued function v. However, as the primary aim
of this work is the study of the time evolution and the analysis of stability, the discussion of
the constraint equations will remain in the background. In what follows, it is assumed that
the constraint equations are satisfied at all time. This assumption can be removed by fairly
general arguments –see [37,38].

3 Perturbations

We will perform a perturbation to first order of the variables v so that v 7→ v̊+ ε v̆ with the
parameter ε controlling the size of perturbation and v̆ describing the perturbation of the
background solution v̊. Thus, assuming that the background variables v̊ satisfy the evolu-
tion equations, and defining (dv(a)/dε)ε=0 ≡ v̆(a), we can obtain from equations (2)-(8) the
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following equations for the linear perturbations:

˙̆ρ−
{

j̆E̊ + Ĕ j̊− 1
2
[
(p̆+ ρ̆)(Q̊+2T̊ )+(Q̆+2T̆ )(p̊+ ρ̊)

]}
= 0,

˙̆E + j̆−2ξ̆ B̊+ T̆ E̊ + ĔT̊ −2B̆ξ̊ = 0, ˙̆B+ T̆ B̊+2ξ̆ E̊ + B̆T̊ +2Ĕξ̊ = 0,

˙̆E −3ξ̆B̊+
1
6

T̆
[
3(B̊2 + E̊2 +3E̊ )− (p̊+ ρ̊)

]
+

2
3

j̆E̊ +
Ĕ(2 j̊+3E̊T̊ )

3
+

Q̆(p̊+ ρ̊)

6

+
(p̆+ ρ̆)

6
(Q̊− T̊ )+

3
2
Ĕ T̊ −3B̆ξ̊ + B̆B̊T̊ = 0, (12)

˙̆B+
3
2

T̆B̊+ ξ̆ (B̊2 +3E̊ )+
3
2
B̆T̊ +3Ĕ ξ̊ +2B̆B̊ξ̊ = 0,

˙̆
Φ− T̆ ( ˚A − 1

2
Φ̊)− ˘A T̊ +

1
2

Φ̆ T̊ −2Ω̆ ξ̊ −2ξ̆ Ω̊ = 0, (13)

˙̆
ξ − 1

2
B̆− Ω̆( ˚A − 1

2
Φ̊)+

1
2

ξ̆ T̊ +
1
2

T̆ ξ̊ − ˘A Ω̊ +
1
2

Φ̆Ω̊ = 0,

˙̆
Ω − ξ̆ ˚A + Ω̆ T̊ − ˘A ξ̊ + T̆ Ω̊ = 0. (14)

From the evolution of the variables T and Q we obtain

˙̆T − Ĕ + p̆+
1
3

ρ̆− Φ̆ ˚A + T̆ T̊ − ˘A Φ̊−4Ω̆Ω̊ = 0,

˙̆Q−2 ˘A +2Ĕ + p̆+
1
3

ρ̆−4 ˘A ˚A +2B̆B̊+2ĔE̊ + Q̆Q̊ = 0.

The equation for the radial acceleration can be recovered after some further calculations as
a complicated linearized equation for the perturbation of A . Thus, in order to undertake a
stability analysis we make some further assumptions about the configuration so as to obtain a
simplified system. First, it is worth pointing out that the derivative along the radial direction
of the acceleration A appears in the evolution equations for Θ and Σ in Eq. (9). Equations
(2)-(8) do not contain explicit dependence on the derivative of the matter density along the
radial direction. Thus, in order to simplify the stability analysis and to be able to extract some
information from the rather complicated perturbed equations we will focus on the vanishing
radial acceleration case. Moreover, we assume that ∂avs = 0–see Section B. Accordingly,
we consider the simplified vector-valued unknown v≡ (ρ,E,B,E ,B,Q,T,ξ ,Φ ,Ω).

3.1 Remarks on the set of equations

We consider the set of linearized evolution equations in the form Åt∂t v̆− Å j∂ jv̆ = B̊v̆. Gen-
eral theory of linear of partial differential equations shows that systems of this form can ei-
ther converge (in an oscillating manner or exponentially) to constant values, have an asymp-
totic exponential (oscillating) decay or are unstable —see e.g. [40]. In the rest of this article,
we look at solutions in which the perturbations stabilize on constant values or decay. In or-
der to study the asymptotical behavior of the characteristic solutions of perturbed system it
is necessary the study of the eigenvalues of the matrix B̊ as t → ∞. Notice that the entries
in the matrix-valued function B̊ are, in general, functions of the coordinates. Under these
circumstances, the core of the stability analysis consists on an investigation on whether the
matrix B̊ satisfies some appropriate relaxed stability eigenvalue conditions. More precisely,
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we study the eigenvalue problem of B̊ by looking at the sign of the real parts of the corre-
sponding eigenvalues λi (or modes of the perturbed system). A similar approach has been
used in [38] —see also the discussion in [39]. General theory concerning the case where the
coefficients of the linearized system are constant is discussed in [40]. The case of systems
with vanishing eigenvalues has been discussed in [41,42,43] while for a general discussion
of the time dependent case and the case of non constant matrix coefficient see [38]. Due to
the form of the matrix B̊ associated to the present problem, a full analysis of the stability
properties of this system is extremely cumbersome. We proceed by analyzing the sign of the
eigenvalues using the fact that a sufficient condition for the instability of the system is the
existence of at least one eigenvalue with positive real part. For a more extended discussion
concerning the requirements of the so-called of the relaxed stability eigenvalue condition see
[41,43]. This simple requirement provides an immediate way to obtain conditions where in-
stability occurs —namely, if there is at least one i such that Re(λi) > 0. Crucially, in the
discussion of stability one does not need explicitly to compute the eigenvalues of B̊ —the
sign of the real part of the eigenvalues can be determined by inspection the structure of the
matrix B̊. Given the characteristic polynomial P(B̊)(x) = ∑

n
i=0 cixi of the matrix B̊, we will

make use of the following well-known results on the roots sign: the trace of a matrix is equal
to the sum of its eigenvalues, hence if the trace of the matrix is positive then the system is
unstable. Now, recall that the determinant of a matrix is the product of the eigenvalues. Ac-
cordingly, a necessary condition for stability is that det B̊ 6= 0 and (−1)n det B̊ > 0 where
n is the number of distinct eigenvalues. Other stability criteria based on inspection of the
characteristic polynomial are the Routh-Hurwitz criterion and the Liénard-Chipart theorem
—see [39,45,46]. Wherever possible, we will also make use of the Descartes criterion to de-
termine the maximum number of positive and negative real roots of the polynomial P(B̊)(x)
for ci ∈R. In particularly simple cases one can exploit a generalisation of the Descartes rule
considering the Routh-Hurwitz criterion to determine the number of roots with positive and
negative real part of P(B̊)(x) by constructing the associated Routh matrix. In the case un-
der consideration, the matrix B̊ has eleven columns and the coefficients of the characteristic
polynomial are, unfortunately, large expressions without an obvious structure. Therefore,
we approach the analysis of the stability problem by making the following assumptions:

j̊ = E̊σJ , j̆ = ĔσJ , p̊ = ρ̊vs, p̆ = ρ̆vs.

Thus, we take the square of the sound velocity vs = ν2
s to be constant and assume Ohm’s law

j = EσJ with σ̊ j ≡ σ̆ j and restrict our attention to the case of null radial acceleration —i.e.
A = 0. This assumption leads to significant simplifications in the analysis. It is, however,
physically quite restrictive as such fluids are not normally encountered in astrophysical sce-
narios, although they are possible, for example, in some early cosmological scenarios —see
also discussion in the Appendix B.

4 Discussion on the stability of the symmetric hyperbolic system

In this Section we discuss necessary conditions for the stability of the configuration un-
der consideration. We focus on the reference solution described by the matrix B̊ in (1).
We present the analysis of the stability for some special configurations defined by proper
assumptions on the kinematic variables given by the 1+ 1+ 2-decomposition. Each case
is then identified according to the assumptions that characterize it —the fields assumed to
vanish are indicated in parenthesis. We discuss in detail the instability condition for the com-
plete list of cases. Assuming the radial acceleration and other kinematic variables to be zero,
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Table 1 The 10×10-matrix B̊.

−(1+vs)(Q̊+2T̊)
2 2σJ E̊ 0 0 0 −(1+vs)ρ̊

2 −(1+ vs)ρ̊ 0 0 0
0 −σJ − T̊ 2ξ̊ 0 0 0 −E̊ 2B̊ 0 0
0 −2ξ̊ −T̊ 0 0 0 −B̊ −2E̊ 0 0
(1+vs)(T̊−Q̊)

6
−E̊(4σJ+3T̊)

3 −B̊T̊ −3T̊
2 3ξ̊

−(1+vs)ρ̊
6

[(1+vs)ρ̊−3(B̊2+3E̊+E̊2)]
6 3B̊ 0 0

0 −2E̊ξ̊ −2B̊ξ̊ −3ξ̊
−3T̊

2 0 −3B̊
2 −B̊2−3E̊ − E̊2 0 0

− 1
3 − vs −2E̊ −2B̊ −2 0 −Q̊ 0 0 0 0
− 1

3 − vs 0 0 1 0 0 −T̊ 0 0 4Ω̊

0 0 0 0 1
2 0 − ξ̊

2 − T̊
2 − Ω̊

2 − Φ̊

2
0 0 0 0 0 0 − Φ̊

2 2Ω̊ − T̊
2 2ξ̊

0 0 0 0 0 0 −Ω̊ 0 0 −T̊

we explore the implications of the assumption on the configuration and its stability. A first
insight into the stability of the system can be inferred from the trace of the matrix expressed
in terms of Σ and Θ as Tr B̊ = 6Σ̊ − (7+ vs)Θ̊ −σJ . It readily follows that Tr B̊ > 0 so that
the system is not stable if

Σ >
(7+ vs)Θ +σJ

6
. (15)

In the remainder of this article we proceed to a more detailed analysis in which we clas-
sify the results according to suitable assumptions on the remaining kinematic variables
(T,Q,Φ ,ξ ,Ω). It should be pointed out, for ease of reference, that the condition T = 0
is equivalent to the relation 2

3Θ = Σ between the expansion Θ of the 3-sheets and the radial
part of the shear of the 3-sheet Σ . Similarly, the condition Q = 0 is equivalent to 1

3Θ =−Σ ,
while the two conditions T = 0 and Q = 0 imply Σ = 0 and Θ = 0. We also notice from the
Maxwell equations that the evolution of the electric (respectively, magnetic) field is coupled
to the magnetic (respectively, electric) field via the twisting of the 2-sheet. Hence, when
ξ = 0 the two evolution equations decouple and evolve with the only common dependence
on T .

4.1 Preliminaries on the symmetries of the system and classes of solutions

The configuration expands or contract along the radial direction according to whether Θ > 0
or Θ < 0, but it cannot accelerate as it is assumed that the parallel acceleration vanishes
—i.e. A = 0. The limit situation of vanishing radial acceleration has been adopted to sim-
plify the analysis of the unstable modes. In this scheme we are able to provide a complete
classification of the stable and unstable solutions for the Einstein-Maxwell-Euler system,
considering appropriate restrictions on the set of the perturbed equations. All the kinematic
quantities and fields are reduced to scalars by the projections in the radial direction and
on the orthogonal plane by the projector Nab. The set of scalars define the vector variable
v introduced in Eq. (1). Any further restrictions on the system such as the vanishing of
other dynamical variables Qi ∈ −→ν ,

−→
ν ≡ {T,Q,Φ ,ξ ,Ω} ⊂ v leads to particular different

solutions of the Einstein-Maxwell-Euler equations with the new symmetry conditions. The
self-gravitating systems will be especially constrained by the pair (E ,B). In gravitating sys-
tems the background geometry is assumed to be in one of the classes of solutions including
the new symmetries. The vector −→ν is a restriction of the vector variable v, where the fluid
four-velocity ua defines the metric in its 3+1 form and supplies the projected components
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of the Weyl tensor along the radial direction (ξ ,Φ) and the variation of the radial direction
na used to construct the metric tensor in its 2+1+1 form. The vanishing of the elements in
Qi implies further restrictions involving the annihilation of other quantities, or the constancy
of Q j 6= Qi during the evolution along ua. We can then refer to the general conditions C:

C (Qi = 0) : (E2,B2,E ,Ω) 7→
(

p+
ρ

3

)
, (16)

(Q j,B) = 0, (17)

Q̇ j = 0. (18)

The conditions in Eqs. (17), specified in Table 2, define five principal classes of solutions
according to the assumption of vanishing Qi ∈−→ν . Table 3 shows the sub-classes of solutions
constructed by the vanishing of a couple of scalars (Qi,Q j). The conditions in (16) are listed
in Table 4 and state the relation between the remaining field variables of the vector −→v i.e.
the pair (E ,B), the electromagnetic fields (E,B), and the matter density ρ . Finally, condi-
tion (18) is made explicit in Table 5. Tables 2, 3, 4 and 5 characterize entirely the system
throughout its subconfigurations, thus providing a complete classification of the solutions.
An analysis and a general discussion of the solutions of the Einstein-Maxwell system in
terms of the magnetic and electric parts of the Weyl tensor can be found in [35]. The stabil-
ity analysis is performed on the systems with A = 0, on the five classes of configurations
and their sub-classes. The I-class with (A T) and II-class with (A Q) are particularly sig-
nificant. Systems with T = 0 are characterized by ΘΣ > 0, i.e. the sign of the expansion
is concordant with that of the radial shear —positive for expanding systems along the ra-
dial direction, or negative for contracting systems, see also Figure 1. On the other hand,
systems with Q = 0 correspond to the case ΘΣ < 0. The relative sign of the scalars of the
radial shear and expansion is a significant element affecting the stability of the system and
the equilibrium configurations: even in the general case where the only assumption on the
system is the vanishing radial acceleration A = 0, the balance of the contributions given by
the radial shear in the systems in expansion (Θ > 0) or in contraction (Θ < 0) is relevant
in determining the states certainly unstable. For contracting systems, or those in expansion
but with positive shear, a threshold on the expansion rate Θ or equivalently the radial shear,
appears for the emergence of the instability. This is a function of the two parameters (σJ ,vs).
The magnetic field, although not constant in time along the radial direction has no specific
role to establish the stability of this model. It is possible to show that for the case (A T)
there is always a threshold for the emergence of unstable phases, while in the case of the ex-
panding systems with negative shear, the difference in sign between the two scalar does not
involve any instability threshold. The conditions for the equilibrium of these solutions in-
volve quantities Qi ∈ ν exclusively related to the fluid dynamics such as A T ξ or A ξ Ω and
imply a serious constraint on the background. Table 4 shows the conditions C in Eqs. (16):
only the electric part of the Weyl tensor is determined by the matter fields and the vorticity.
In general, the classes (A T) and (A Q) do not imply the vanishing of others variables by
conditions C in Eqs. (17): that is, the systems do not require any additional symmetry as the
initial data Q j = 0 for the solutions (16). Remarkably, the (A QT) class corresponds to the
case of null shear and null radial expansion. Tables 2 and 3 show that the pairs (ξ ,Ω) and
(ξ ,Φ) are related. The magnetic field must be constant along the fluid flow for the solution
(A ,T,ξ ). Conversely, one has B = 0 whenever ξ = 0. The solutions T = 0 have radial
vorticity Ω constant during the evolution of the system as shown in Table 5. If the radial
vorticity is initially zero, then the expansion Φ of the 2-sheet generated by na is constant
along ua and the electric part of the Weyl tensor is entirely determined by the matter field ρ .
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Table 2 Vanishing radial acceleration A : the five principal classes of solutions for the linear stability the
problem, identified by setting to zero the radial acceleration and a scalar quantity of the set Qi ∈ ν =
{T,Q,Φ ,ξ ,Ω} and B, the magnetic part of the Weyl tensor. The elements of the table make explicit the
conditions C in (17). Thus, for example in the III−class, the conditions of the (A Φ) configurations imply a
vanishing radial vorticity Ω or the vanishing of the pair ξ and B. Then we assumed that the system has a fur-
ther constraint represented by a third zero quantity Qi ∈ ν defining the subclasses. The check marks indicate
the cases already treated, the table exhausts the five classes (A ,Qi) and the subclasses (A ,Qi,Q j). Particu-
larly the III−class (A φ) shows the symmetry between the solutions at zeros (A Q), (A T) and {ξ ΩB}.
The subclasses (A ,Qi,Q j,Qk) are summarised in Table 3.

A A T A Q A ξ

I-class A T X X X

II-class A Q A T Q X X

III-class A Φ = A ΦΩ A T Φ = T +A ΦΩ A QΦ = Q+A ΦΩ X
A ΦξB T +A ΦξB Q+A ΦξB

IV-class A ξ A T ξ = T +A ΦξB A Qξ X

V-class A Ω A T Ω A QΩ A ξ Ω = A ξ ΩB

Table 3 Subclasses (A ,Qi,Q j) of the five principal classes I−V in Table (2). The table highlights the role
of the vanishing pairs (T Q) and ξ ΩB.

A T Q A T ξ A QΦ A Φξ

A T QΦ = Q+T +A ΦξB X X X
Q+T +A ΦΩ X X X

A T Qξ A T Q X X

A T QΩ A T ξ Ω = T +A ξ ΩB A Qξ Ω = Q+Aξ ΩB A Φξ Ω = Φ +ξ ΩB

A T Qξ Ω = T +Q+A ξ ΩB

If initially Φ = 0 then ξ = 0 and therefore B = 0, providing a non-vacuum solution with a
vanishing magnetic component of the Weyl tensor —see Table 4.

4.2 Analysis of the system stability, general conditions and results

The symmetries of the system and the adapted 1+1+2 formalism highlight the emergence
of unstable states under linear (and non-linear) perturbations. The unstable phases of the
system with A = 0 are primarily regulated by the expansion (or the contraction) and the
shear in the radial direction. These scalars are related through the velocity of sound and the
conductivity through the relation:

F : (Σ ,Θ) 7→ (vs,σJ ,ρ), (19)

ρ 7→ (vs,σJ). (20)

Conditions C in Eqs. (16,17,18) describe the symmetries of the system but not its stabil-
ity. Conversely, the relations F in Eqs. (19) relate the only kinematic variables of the radial
shear and radial expansion, Σ and Θ ,respectively, to the constants of the state and con-
stitutive equations: the velocity of sound vs and the conductivity σJ . We emphasize that
Eq. (19) does not involve other dynamical variables such as the Weyl scalar or the electro-
magnetic field. Analogously, for the five classes of solutions and their subclasses according
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Table 4 Conditions C as in Eq. (16) and Eq. (17).

C

C (A ,T ): E +2Ω 2 = p+ ρ

3 > 0
C (A ,Q): E2 +B2 +2E =−(p+ρ/3)< 0
C (A ,ξ ): B = ΦΩ

C (A ,T,Ω): E = p+ρ/3 > 0
C (A ξ ,Ω): B = 0

Table 5 Condition C in Eq. (18). Classes of solutions and null evolution of the kinematic quantities.

Class
(A ,T ): Ω̇ = 0
(A ,T,ξ ): Ω̇ = Φ̇ = Ḃ = Ḃ = 0
(A ,T,Ω): Φ̇ = 0

to Eqs. (16,17,18) the relation in (20) provides an upper bound on the matter density as a
limiting value determined by the pair (vs,σJ). The density, but not its gradient, is in fact a
variable in the system and, since this is an iso-entropic and barotropic fluid, one can use this
to get information on the hydrostatic pressure the system is subjected to.

4.2.1 Discussion on the stability of the system with vanishing acceleration

A relevant constraint F on the stability of the system with vanishing radial acceleration is
provided by condition (15) on the trace Tr B̊. It can be expressed in terms of the expansion
along the privileged direction as follows:

(u)0 : Θ <Θu ≡
6Σ −σJ

κ
, κ ≡ 7+ vs > 1. (21)

This is a first condition for the instability of the system providing an upper bound —i.e. a
threshold for the occurrence of the instability— on the expansion or contraction with respect
to the shear projected along the radial direction. For small or zero conductivity the limit Θu
is a fraction of the positive shear, where the system cannot contract or an instability occurs.
For negative shear the contraction is limited by the value Θu < 0. If the contraction rate is
too large, i.e. Θ ∈ (Θu,0), the system is unstable according to Eq. (21). We summarize the
analysis in the following points:

Systems in contraction Θ < 0 and in expansion Θ > 0. The expanding configurations, de-
scribed in the I and IV quadrant of Figure 1, are favored in their stable phases with respect to
the systems in contraction. The preference for the stable expansion is especially evident for
negative shear, as in the IV quadrant which describes also a part of the (A ,Q) systems. In
the IV quadrant the stability conditions are always guaranteed within the condition (21) as
infσJ > 0. The condition of the trace in Eq. (21) is not sufficient to establish the emergence
of the instability for this system. By contrast, a situation with ΘΣ < 0 appears to favour
the equilibrium. This seems to be confirmed by the situation in the I quadrant, with positive
shear, describing parts of the (A ,T ) systems. For slow expansions Θ̇ ≈ 0 and small conduc-
tivity, where the system is unstable, a threshold for the instability appears depending on the
conductivity and can be easily seen by Eq. (21). Further restrictions on the symmetries of the
system, in the subclasses of Tables 2 and 3 will turn in a deformation of Eq. (21) as shown
by Eq. (22). An increase of the shear corresponds in these cases to an increase of the insta-
bility regions in the plane Θ −Σ in Figure 1. Considering the instability for the contracting
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systems, the II and III quadrants, we can see that the threshold for the emergence of the
instability Θu decreases in general for positive shear up to the limiting value Σ0 ≡ σJvs. The
contraction is canceled and for higher shear as the system begins an expanding phase. Then
the system will necessarily be unstable and the zone of stability will be limited to positive
shear in the range Σ ∈ (0,Σ0) and contraction Θ ∈ (Θ0,0), where Θ0 ≡ −σJ/κ < 0 is the
threshold for the stability of the systems in contraction with non-zero conductivity: for faster
contractions Θ <Θ0, the system with vanishing shear is unstable. This region, however, in-
creases with increasing conductivity. This means that the conductivity acts to stabilize the
contracting configurations with positive shear. Systems (A ,Q) are examples of configura-
tions in the III quadrant: the systems are stable for high conductivity, negative shear and
sufficiently low contractions, therefore the expanding (A Q) systems are favored for stabil-
ity. In general, for systems in contraction, in the II and III quadrants, a high conductivity is
required for stable systems of (A T) and (A Q) classes, respectively.

The role of the radial shear. In the I and II quadrants the radial shear is positive. An increases
of Σ generally favors the instability of the configuration. An increase in magnitude of the
negative shear in the III quadrant (ΘΣ > 0), for contracting systems tends to favor the
system stability for fast contractions.

The role of the conductivity. In general, an increase of the conductivity parameter particu-
larly in the II and III quadrants has a stabilizing effect on the system according to the law
in Eq. (21). In the III quadrant this is the case, for example, for systems of the I−class or
(A T) configurations, where the sign of the radial shear is equal to that of the contraction.
The stability region increases for low contractions and also for small conductivity as the
shear is high enough in magnitude; ultimately, for high conductivity the system can remain
stable even for high radial contractions. The expansion phase is stable for negative shear,
whereas at low expansion the system is unstable. The minimum threshold for the emer-
gency of the instability increases with the shear but decreases with the conductivity, which
has then a stabilizing effect on the system for very high conductivity. The stable regions in
the Θ−Σ plane extend by increasing the shear and therefore stability is advantaged for high
conductivity, for the expansion phase and for shear negative zero or small conductive. In
particular, the solutions of the II-class (A Q) belong to a wider class of solutions admitting
different possible symmetries according to Table 2: stable for any conductivity at negative
shear, while for expanding systems as in the II quadrant the instability regions are maxi-
mum for smaller shear and zero for greater shear. The size of this region increases with the
conductivity. However the turning point of the expansion Θ is regulated by the ratio σJ/κ .

The role of the velocity of sound. Figure 1 emphasizes the role of the velocity of sound
in the determining of the unstable states of the system. The shear and expansion scalars
have been normalized for the finite conductivity σJ . For the systems included in the I-II
and III quadrants, the velocity of sounds plays a significant role in the determination of the
unstable phases, while there is no threshold for the emergence of the instability, crossing
with continuity the III and IV quadrants of the Θ −Σ plane. In the limit of very large vs
the configuration stops the expansion in the I quarter or the contraction phase in III one
i.e. the threshold approaches Θu = 0. For sufficiently small velocity of sound one has that
Θu/σJ ≈−1/7+(6/7)Σ . Then, for sufficiently small Σ the scalar expansion changes sign,
and the expansion stage cancels the threshold for the instability, which instead appears for
contracting systems. There is a set with positive but small radial shear where the expansion
threshold disappears, but for those values of the shear the system is unstable for sufficiently
fast contractions. Generally, the upper limit is small and the contracting system is always
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unstable: the expansion vanishes as the positive shear is Σ/σJ = 1/6 —thus, for this con-
figuration, the contracting phases are unstable. The solutions Θ = 0 and Σ = 0 belong to
(A ,T,Q) class. For Σ/σJ > 1/6 the contracting system is always unstable for any pair
(σJ ,vs). Decreasing the velocity of the sound, the region of Θ − Σ plane, for expanding
systems corresponds to unstable regions for an increase of the positive shear. As the veloc-
ity of sound decreases for positive shear the instability region increases. The instability in
the I quadrant is carried out for sufficiently high expansions and shear. The increase of the
speed of sound stabilizes the expanding system for positive shear and destabilizes the con-
tracting systems at Σ/σJ > 1/6. In the window of smaller but positive shear, the increase
of the speed of sound acts to destabilize the system while a decrease of this corresponds to
an increase the stability provided that the contraction is sufficiently small in magnitude or
Θ/σJ >−1/(vs +7).

We now focus on the effects the velocity of sound in the case of negative shear: for the
expanding system in the IV quadrant no threshold exists. For contracting systems in the III
quadrant, an increase of the speed of sound increases the stability of the system. A decrease
of the velocity of sound, for contracting systems with negative shear, makes the system
unstable even for very small expansions. The increase in magnitude of the radial shear in-
creases the stability of the system. Ultimately, the equilibrium of the system depends on the
velocity of sound in I and III quadrants —that is for concordant shear and expansion— or
in the IV quadrant for systems in contraction with positive shear smaller than 1/6σJ . In the
limit of very large velocity of sound Θu > 0 for Σ/σJ > 1/6, for Σ/σJ ∈ (−∞,1/6) it is
Θu < 0.

Fig. 1 Left: Plot of the limiting expansion Θuκ , defined in Eq. (21) as function of the shear in the preferred
radial direction where κ ≡ vs +7 forσJ = 0.1 (black line ) and σJ = 100 (dashed black line ). A similar plot
can be constructed for the expansion Θu in terms of σJ/κ and Σκ . The instability regions, for Θ < Θu, are
colored: for σJ = 0.1 this corresponds to the gray region, while the light gray region determines the instability
for configurations with conductivity parameter σJ = 100. Thus, the gray region is stable for this system. In
the white region the system can be stable. Configurations (A T) are in the I and III quadrants (ΣΘ > 0) as is
the T = 0 class of solution for Σ = (2/3)Θ , while the (A ,Q) class for Σ =−(1/3)Θ belongs to the II and
IV quadrants (ΣΘ < 0). The stability of a system expanding along the radial direction (but not accelerating,
as it is A = 0) is regulated as in the I and IV quadrants. The contraction occurs in the II and III quadrants
where the radial shear is positive and negative, respectively. The classes are summarized in Table 2. The
contraction limit vanishes and the stability limit is only on the radial expansion for high enough values of the
shear according to Σ = σJ/6. Right: Plot of the limiting expansion Θu/σJ , in Eq. (21), versus the radial shear
Σ/σJ for vs = 0.01 (black line) and vs = 100 (dashed black line). The shaded regions mark the sections in
the Θ −Σ plane where instability occurs as Θ <Θu. It is Θu = 0 for Σ/σJ = 1/6.
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Fig. 2 Ratios of the limiting extreme values (LEV)Σ (left panel) and (LEV)Θ introduced in Eq. (25), func-
tions of the velocity of sound vs. At at v∗s it is Σx = σ

−1
J ρs =

2σJ
4+
√

70
≈ 0.16σJ while Θx = 0.267592σJ , in

v′s it is Σs = Σx
√

ρ/σJ ≈ 0.22
√

ρ analogously Θs = 0.27
√

ρ , in the cross point in (v′s,v
∗
s ) it is ρs = 0.32σ2

J
where Σs = 0.32

√
ρ in (LEV)

Σ
while the ratio is ρs/σ2

J ≈ 0.44 in (LEV)
Θ

.

4.2.2 Stability of the subclasses with restricted symmetries

Additional restrictions on the system with Σ 6= 0 and Θ 6= 0, and therefore, on the perturba-
tions modify the condition (21) on the reduced system as follows

Σ ≥ Σ0|C , Σ0|C ≡ a[(b+ cvs)Θ + cσJ ], a < 1, (22)

or a� 1, b� c, c≥ 1, {a,b,c} ∈ N. (23)

The quantities {a,b,c} change depending on the class of solutions. In terms of the expansion
Θ , analogously to Eq. (21) one has

Θ ≤ Θ0|C , Θ0|C ≡
Σ −acσJ

a(b+ cvs)
. (24)

It follows that the limit of the expansion vanishes Θ0|C = 0. Given Σmax ≡ acσJ , for smaller
shear Σ < Σmax the expanding systems are always stable while a threshold for the instability
of the contracting systems appears: for Θ < Θ0|C the system is unstable. It is noteworthy
that the limit of the shear Σ0|C = 0 is cancelled for maximal contractions equal to Θmax ≡
−cσJ/(b+ cvs). More generally, for each subclasses of Table 2 and Table 3 the unstable
phase will be regulated by some limiting extreme values (LEV) for the systems with Θ = 0
or Σ = 0 providing the boundary values for the stable regions of the Θ −Σ plane:

(LEV)Σ : ρs ≡
12σ2

J
(3+ vs)2(1+3vs)

, Σs ≡
1
3

√(
1
3
+ vs

)
ρ, Σx ≡

2σJ

3(3+ vs)
. (25)

(LEV)Θ : ρs = ρs|(LEV)Σ
, Θs ≡

3Σs

2
, Θx ≡

3Σx

2
, (26)

see Figure 2. A threshold exists for the stability in the systems with the density in the two
regimes ρ > ρs and ρ < ρs, according to (LEV)

Σ
or (LEV)

Θ
, with conditions on the radial



On the locally rotationally symmetric Einstein-Maxwell perfect fluid 15

shear or, respectively, the expansion or contraction. The details of the analysis are considered
in the Appendix A. For stability, in general, one has the two following cases:

ρ < ρs ∆ ∈ [−∆x,−∆s] or (+∆s,+∞), ρ > ρs (−∆s,∆s) or (+∆s,+∞),

∆ = Σ for (LEV)
Σ
, ∆ =Θ for (LEV)

Θ
. (27)

Each of the regions are typically regulated by additional conditions on Qi ∈ ν (LEV)
Σ

. For
example, the I−class (A T) solution is determined by a set of conditions on B, ξ and E. We
note that the limiting value on the density ρs increases with the conductivity but decreases
with the velocity of sound —there are three ranges of vs to be considered as detailed in
Figure 2. However, the boundary ∆s depends on the density ρ and, therefore, it is differently
regulated in the three regions. For low density regimes ρ < ρs, the density function regulates
the system stability in a reduced region of the ρ−Σ plane through the conditions imposed
on the shear or the expansion —especially for low values. This situation is more evident for
a low velocity of sounds v < v∗s . For larger values, the ranges for low density variations are
restricted to ρ < 0.2σJ .

4.3 Comments on the five principal classes of solutions

I-Class (A T): this case is constrained by the condition C (A ,T ) obtained from Eq. (9).
This relation is a consequence of the condition T = 0, and it will occur in the other subcases
characterized by this assumption. The evolution equation for the parallel vorticity Ω is Ω̇ =
0. This quantity remains constant along the fluid motion, for the perturbed quantity as well
as the unperturbed one. Furthermore, the time evolution of the matter density only involves
the kinematic variable Q. We can draw some conclusions on the stability of the system on
the basis of the trace of the matrix. The system is linearly unstable if it has a negative shear
on the radial direction which is bounded by Σ̊ ≤ Σx. It is worth noting that the limiting
case is defined only by the constitutive equation, the conductivity σJ , and the equation of
state by vs —fixed by the reference solution. Furthermore, considering the coefficients c9 =
−1 and c8 = TrB̊ < 0 we infer the condition for the stability c1 < 0. Using the condition
C (A ,T ), this condition can be rephrased as the following two alternatives: (i) ρ̊ < ρ̊s with
Σ̊ ∈ (−Σ̊x,−Σ̊s)∪ (Σ̊s,+∞) and (ii) ρ̊ ≥ ρ̊s with Σ̊ ∈ (Σ̊s,+∞), where the (LEV)

Σ
hold.

II-Class (A Q): the condition 1
3Θ =−Σ implies that the matter and field variables are

related by the constraint C (A ,Q) —see equation (4). This relation is a consequence of the
assumption Q = 0, and it will occur in the other subcases characterized by this hypothesis.
We observe that the assumption Q = 0 implies, in particular, that the expansion of the 3-
sheets and the radial component of the shear of the 3-sheet must have opposite sign. Studying
the problem for the reduced system of nine variables we find that the system is linearly

unstable if Tr
o
B > 0 —that is if Θ̊ is negative and bounded above by Θ̊ ≤ Θ0|C with (a =

c = 1;b = 9). Again, as in the case T = 0, we obtain a constraint for the radial expansion
that depends on the unperturbed constants (σJ ,vs).
III−Class (A Φ): the assumptions A = 0 and Φ = 0 on equations (6) and (7) give rise to
two possible subcases: (i) Ω = 0 or (ii) ξ = 0 and B = 0. We consider therefore these two
subcases separately:

(A Φ Ω): the trace implies the following condition of instability Σ̊ ≥ Σ0|C with (a =

2/9,b = 6,c = 1). We note that for the reference solution Θ̊ and Σ̊ are related by the square
of the velocity of sound and the conductivity through σJ . However, the sign of the ΣΘ is not
constrained by this relation.
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(A Φ ξ B): in this case T is the only kinematical variable involved in the evolution of
the electromagnetic field. The criterion on the trace of the matrix B̊ implies the following
condition of instability Σ̊ ≥ Σ0|C with (a = 2/21,b = 16,c = 3).

Thus, we finally note that the above subcases are characterized by similar constraints on
Σ̊ and Θ̊ .
IV−Class (A ξ ): equation (7) leads to the condition C (A ,ξ ). On the other hand, the
condition of instability on the trace of the matrix B̊ leads to the inequality Σ̊ ≥ Σ0|C with
(a = 1/33,b = 40,c = 6).
V−Class (A Ω): in this case the system is unstable if Σ̊ ≥ Σ0|C with (a= 1/15,b= 19,c=
3).

We conclude this Section pointing out that the stability of the configuration under con-
sideration is constrained by similar relations between the unperturbed radial part of the shear
of the 3-sheet Σ̊ and the radial expansion Θ̊ . These constraints only depend on the square
of the sound velocity and the conductivity. In Appendix A we specialize this analysis to
consider the subclasses of Tables 2 and 3.

5 Conclusions

In this article we explored the stability properties of an ideal LRS Einstein-Maxwell perfect
fluid system. As a first step we have formulated an hyperbolic initial value problem provid-
ing a suitable (quasilinear) symmetric hyperbolic system by means of which one can address
the non-linear stability of this system. The propagation of the constraints has been assumed
to hold at all times. This result can be proven by fairly general arguments as discussed in [37,
38]. Our analysis is based on a 1+1+2-tetrad formalism. In our calculations certain choices
of kinematic properties of the configuration were motivated by the necessity to extract some
information from the rather complicated equations governing the perturbations. We studied
five principal classes of solutions and different subcases, considering systems with particu-
lar kinematic configurations. The assumption of spherical symmetry simplifies the problem
and takes advantage from the 1+1+2-decomposition [17]. More specifically, we consider
a barotropic equation of state: when the fluid entropy is a constant in both space and time,
an equation of state to link the pressure p to the matter density ρ can be given in the form
p = p(ρ) —see e.g. [10]. In the present work we restrict our attention to isotropic fluids.
By restricting our attention to isotropic fluid configurations we can make use of a constant
electrical conductivity coefficient for the fluid (plasma). These assumptions simplify con-
siderably the analysis of the stability problem of linear perturbations. Thus, in this work we
proceeded as follows: we wrote the 1+1+2-equations for the LRS system using the radial
vector. For the linear perturbation analysis it was useful to introduce a re-parameterized set
of evolution equations based of a suitable combination of the radially projected shear and
expansion. The resulting evolution system was then used to analyse the stability problem for
small linear perturbations of the background. We have presented the main results concerning
the linear stability of this system in a classification of subcases that constitutes the principal
result of this paper. In this first investigation of the problem ,we address the stability analysis
of the particular case of constant velocity of sound, leaving the investigation of the stability
problem of more general cases for a future analysis2. In order to close the system of evolu-
tion equations it is necessary to specify the form of the conduction current. Accordingly, we

2 For a more thorough discussion of this case and more general equations of state in relativistic hydrody-
namics and with possible relevance to astrophysics see [47,48] –see also Sec. (B)
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assumed Ohm’s law so that a linear relation between the conduction current and the electric
field, involving a constant electrical conductivity coefficient holds. We have assumed the
pressure of the fluid p and the charge density ρ̃C to be functions of the matter density ρ , and
the charge current jc function of the electric field E. Although viable, the perturbed equa-
tion for the radially projected acceleration A turned out to be a very complicated expression
of the other variables and their derivatives. Thus, in order proceed in the stability analysis,
we studied a simplified form system by taking up some assumptions on the configuration.
Assuming a vanishing radial acceleration for the reference solution, our analysis is partic-
ularly focused on some specific cases defined by fixing the expansions of the 3-sheets and
2-sheets, the radial part of the shear of the 3-sheet, the twisting of the 2-sheet and the radial
part of the vorticity of the 3-sheet. In this way we are also able to provide results concerning
the structure of the associated LRS taking into consideration all the different subcases. This
analysis constitutes the main result of the article: 1. Firstly, we found that in many cases
the stability conditions can be strongly determined by the constitutive equations by means
of the square of the velocity of sound and the electric conductivity. In particular, this is ev-
ident for the contracting and expanding LRS configurations; in fact, 2. a threshold for the
emergence of the instability appears in both cases. The conditions relate mainly the expan-
sion (or contraction) along the preferred direction with respect to different regimes of the
radial shear. These results provide, in a quite immediate manner, information regarding the
unstable configurations. The results for these configurations are illustrated schematically in
Figure 1 in the four fundamental cases considered here, emphasizing the role of the couple
of parameters (vs,σJ). Moreover, 3. the sign of ΣΘ plays an essential role in the determi-
nation of the unstable phases of the systems —for expanding configurations with ΣΘ < 0,
appears no threshold for the emergence of instability by means of condition (15). The veloc-
ity of sound and the conductivity act in a different way for the systems in the three regions
of Figure 1, favouring or preventing the instability. 4. There is always a threshold for the
contraction or expansion of the system —for contracting systems with a fast contraction
rate, |Θ |> |Θu(σJ ,vs)|> 0, or for expanding systems where 0 <Θ <Θu(σJ ,vs) instability
emerges. However, for some cases the density ρ is constrained while the pair (Σ ,Θ) varies
in different ranges depending on (ρ,vs,σJ).
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A Details on the subclasses of the solutions

Subclasses of the I-class (A ,T). In what follows we analyze in further detail the following subcases of the
configuration(A T):

(A TQ): in this case the configuration is defined by the conditions A = 0, Σ = 0 and Θ = 0. The
matter density evolution only depends on the electric field and the current density. The evolution of the elec-
tromagnetic fields is regulated by the twist ξ of the 2-sheet. Moreover, the radial vorticity is constant during
the motion —i.e. Ω̇ = 0. From the evolution equations for T and Q we obtain, respectively, the conditions
C (A ,T ) and C (A ,Q). From these relations we find E = p+ 1

3 ρ−2Ω 2 and 4Ω 2 = B2 +E2 +3p+ρ . This
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case has at least one zero eigenvalue associated with the vorticity. This eigenvalue has multiplicity 2. The
sum of the eigenvalues of the associated 7-rank matrix is TrB̊ =−σJ < 03.

(A TΦ): in this case one has Ω̇ = 0, and C (A ,T ). The conditions A = 0 and Φ = 0 imply from
equations (6), (7) either (i) Ω = 0 or (ii) ξ = 0 and B = 0. We consider these two subcases separately:

(i) For (A TΦ Ω) the system is characterised by the condition C (A ,T,Ω). From the criterion on the
trace one can deduce that the system is unstable if Θ̊ ≤ −(σJ)/(3+ vs). Now, considering the determinant
of the reduced 7×7-linearised matrix4 the necessary condition for stability is that det B̊ < 0. Combining this
condition with the criterion of the trace and using the fact that p̊ = ρ̊vs we obtain for stable configurations
the following conditions:

(ia) for ρ̊ < ρ̊s then one has that Σ̊ ∈ (−Σ̊s,+Σ̊s) and Q(B̊, ξ̊ , E̊2)< 0, or Σ̊ ∈ (−Σ̊x,−Σ̊s)∪ (Σ̊s,∞) and
Q(B̊, ξ̊ , E̊2)> 0;

(ib) For ρ̊ ≥ ρs then one has Σ̊ ∈ (−Σ̊x,+Σ̊s) and Q(B̊, ξ̊ , E̊2)< 0, or Σ̊ ∈ (+Σ̊s,∞) and Q(B̊, ξ̊ , E̊2)>

0. With ξ̊ 6= 0, Q(B,ξ ,E2)≡ 3Bξ +2E2σJ and we consider the (LEV)
Σ

.

We note that the reference matter density and shear ρs and Σx, depend on the constants (vs,σJ) and the
limit Σs depends only on the matter density and the square of the sound velocity.

(ii) (A TΦ ,ξ ,B): in this case the Maxwell equations reduce to Ḃ = 0 and Ė = − j. Moreover, Ω̇ = 0
and the condition C (A ,T ) holds. The corresponding reduced system has six unknowns. We notice here the
eigenvalues: λ0 = 0 with a subspace of dimension 3 and

λ1 =−σJ , λ± = 1
2

[
− (3+ vs)Θ̊ ±

√
2ρ̊(vs +1)2 +(vs−1)2(Θ̊)2

]
. (28)

The conditions on the sign of λ± imposes severe restrictions on the radial expansion. These depend on the
sound velocity and the background density matter: the condition λ± < 0 (for the system stability) is satisfied
if Θ̊ >

√
(1+ vs)ρ̊/2.

(A Tξ ): this case implies the equations Ḃ = Ḃ = Ω̇ = Φ̇ = 0 while the electric field satisfies Ė =
− j. Moreover, one has the condition C (A ,ξ ) with C (A ,T ). We study the associated 8× 8 matrix: the
eigenvalues of this matrix are λ± and λi as defined for the case (A T Φ ,ξ ,B) and a zero eigenvalue with
multiplicity 5 associated to the variables (B,B,Ω ,Φ).

(A TΩ): in this case one has Φ̇ = 0. From equation (9) one finds C (A ,T,Ω). The time evolution of
the electric and magnetic fields are regulated by the twisting ξ of the 2-sheet —see equations (3)-(4). The
temporal evolution of ξ is fixed explicitly by the magnetic part of the Weyl tensor —see equation (7). On the
other hand, from the trace of the associated rank 7 matrix we infer that the system is unstable if Σ̊ <−Σx. In
order to obtain necessary conditions for stability one requires c7 =−TrB̊ > 0, and c1 > 0. These inequalities
lead to the following cases with (LEV)

Θ
:

(i) if ρ̊ < ρ̊s then Θ̊ ∈ (−Θ̊x,−Θ̊s)∪ (+Θ̊s,∞) and ξ̊ 6= 0, or Θ̊ ∈ (−Θ̊x,+Θ̊s) and ξ̊B̊ < 0;

(ii) if ρ̊ ≥ ρs then Θ̊ ∈ (−Θ̊s,+Θ̊s) and ξ̊B̊ < 0, or Θ̊ ∈ (+Θ̊s,∞) and ξ̊ 6= 0.

Subclasses of the II-class (A ,Q). In this subsection we focus on the configurations with 1
3Θ =−Σ . Taking

into account the results on the system (A Q), we consider the following subcases.
(A QΦ): the condition C (A ,Q) holds. Moreover, the conditions A = 0 and Φ = 0, imply from equa-

tion (6) two subcases, (i) Ω = 0 and (ii) (ξ = 0,B = 0), respectively.
(i) (A QΦ Ω): from the trace of the reduced rank 7 matrix the configuration is bound to be unstable if

Σ̊ ≥ Σs ≡ 2σJ/3(15+2vs). On the other hand, studying the sign of the characteristic polynomial coefficient
c5 < 0 we infer that to obtain stability: for E̊ < E̊p and (a) T̊ >−2σJ/(15+2vs) with ξ̊ <−ξ̊p or ξ̊ > ξ̊p, or

3 The non-zero coefficients of the characteristic polynomial are: c2 = (6ξ̊ 2Ω̊)2 > 0, c3 = ξ̊ 2(8σJ E̊2 +

18B̊ξ̊ + 9σJΩ̊ 2), c4 = 1
2 ξ̊
(
3σJ(3B̊− 4B̊E̊)+ 2ξ̊

(
9Ω̊ 2− 4(B̊2 + E̊2− 9ξ̊ 2)

))
, c5 = 9

2 ξ̊ (B̊+ 2σJ ξ̊ ), c6 =

13ξ̊ 2 > 0 c7 =−Tr B̊ > 0.
4 det B̊ = (1+ vs)ξ̊

2(2σJ E̊2 +3B̊ξ̊ )
(
(1+3vs)ρ̊−3Q̊2).
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(b) E̊ < E̊p and T̊ > T̊p. Otherwise, for E̊ ≥ E̊p with T̊ >−2σJ/(15+2vs), with the following definitions:

E̊p ≡
( 5

6 +
5
2 vs + v2

s
)
ρ̊ +

2
(
50+ vs(15+2vs)

)
σ2

J

(15+2vs)2 ,

T̊p ≡
1

285+78vs

[
−3(13+2vs)σJ +

{
6(95+26vs)

([
5+3vs(5+2vs)

]
ρ̊−6E̊

)
+9(13+2vs)

2
σ

2
J

}1/2
]
,

ξ̊p =
1

78

[√
39
{

2
(
5+3vs(5+2vs)

)
ρ̊−12E̊ −3T̊ 2(95+26vs)−6T̊ (13+2vs)σJ

}1/2
]
, (29)

with T = −3Σ . Once again, the limiting conditions on the radial part of the shear of the 3-sheet, Σ , and the
electric part of the Weyl tensor is completely regulated by the reference density and the constants (σJ ,vs).
This stability conditions can be alternatively expressed as follows:

ρ > 0, Σ̊ > Σs, and ξ̊
2 > ξ̊

2
s ≡ 1

52

{
2(B̊2 + E̊2)+4

[
1+ vs(3+ vs)

]
ρ̊ +3Σ̊

[
2σJ(13+2vs)−3(95+26vs)Σ̊

]}
.(30)

(ii) (A QΦ ξ B): with the condition C (A ,Q), while the time evolution of the radial projected vorticity
is entirely regulated by the radial part of the shear —see equation (8). The system, with a rank 6 matrix, is
unstable if Σ̊ ≥ Σs ≡ 2σJ/3(13+2vs). Otherwise, it is stable if (a) E̊ < E̊p with T̊ >−(2σJ)/(13+2vs) and
Ω̊ > Ω̊p ∪ Ω̊ <−Ω̊p or Ω̊ ∈ [−Ω̊p,Ω̊p] with T̊ > T̊p; (b) E̊ ≥ E̊p and T̊ >−(2σJ)/(13+2vs), where

Ω̊p ≡
1

2
√

6

{
−3E̊ +2

[
2+3vs(2+ vs)

]
ρ̊ +

6
(
73+26vs +4v2

s
)

σ2
J

(13+2vs)2

}1/2

, (31)

T̊p ≡
−3(11+2vs)σJ

210+66vs
++

1
210+66vs

[√
3
{

8(35+11vs)
[
2+3vs(2+ vs)

]
ρ̊ +3(11+2vs)

2
σ

2
J −12E̊ (35+11vs)−96(35+11vs)Ω̊

2
}1/2

]
,

E̊p ≡ 2
3

(
2+3vs(2+ vs)

)
ρ̊ +

2
(
73+26vs +4v2

s
)

σ2
J

(13+2vs)2 . (32)

Alternatively, these conditions can be reexpressed as Σ̊ < Σs and

Ω̊
2 >

[
B̊2(3E̊2−2)−2E̊2 +

[
3+ vs(9+4vs)

]
ρ̊ +6Σ̊

[
(11+2vs)σJ −3(35+11vs)Σ̊

]]
/16.

(A Qξ ): in this case one has Σ =−Θ/3 with C (A ,ξ ) from equation (7) and C (A Q). The radial shear
is the only kinematical variable that explicitly regulates the time evolution of the variables (E,B,ρ,Φ ,E ,B).
The radial vorticity and the shear are related by the two evolution equations (8) and (9), respectively. This
is a rank 8 matrix problem. The system is unstable if Σ̊ ≥ (2σJ)/(51+ 6vs). The system is stable if either
(a) E̊ < E̊p and T̊ > T̊p or −2σJ/(17+2vs) < T̊ < T̊p and Ω̊ < −Ω̊p ∪ Ω̊ > Ω̊p; or (b) E̊ ≥ E̊p and T̊ >
−2σJ/(17+2vs). In the above conditions we used the following definitions:

Ω̊p ≡
√

3
12

{
4
[
2+3vs(2+ vs)

]
ρ̊−6E̊ −15T̊ 2(25+6vs)−6T̊ (15+2vs)σJ

}1/2
, (33)

E̊p ≡ 2
3

[
2+3vs(2+ vs)

]
ρ̊ +

4
[
65+ vs(17+2vs)

]
σ2

J

(17+2vs)2 , (34)

T̊p ≡
1

375+90vs

{
30(25+6vs)

{
2
[
2+3vs(2+ vs)

]
ρ̊−3(15+2vs)σJ −3E̊

}
+9(15+2vs)

2
σ

2
J

}1/2

.(35)

Alternatively, these conditions can be written as Σ̊ < 2σJ/(51+6vs) and

Ω̊
2 > 1

16

{
B̊2 + E̊2 +

[
3+ vs(9+4vs)

]
ρ̊ +3Σ̊

[
(30+4vs)σJ −15(25+6vs)Σ̊

]}
.

(A QΩ): in this case one has that T = −3Σ and Σ = −Θ/3 and the condition C (A ,Q) : B2 +E2 +

2E = −(p+ρ/3) holds. The system is unstable if Σ̊ ≥ Σs ≡ σJ/3(8+ vs). A stable system meets the fol-
lowing conditions: (a) E̊ < E̊p, with T̊ > T̊p or −3Σs < T̊ ≤ T̊pand (ξ̊ < −ξ̊p, ξ̊ > ξ̊p); or (b) E̊ ≥ E̊p and
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T̊ >−3Σs. In the above expressions we have used the definitions

T̊p ≡
1

165+42vs

[
−3(7+ vs)σJ +

{
3(55+14vs)ρ̊

(
[5+3vs(5+2vs)]−6E̊

)
+9(7+ vs)

2
}1/2

σ
2
J

]
,(36)

ξ̊p ≡
1√
78

[{
[5+3vs(5+2vs)]ρ̊−6E̊ −3T̊ 2(55+14vs)−6T̊ (7+ vs)σJ

}1/2
]
, (37)

E̊p ≡
(8+ vs)

2[5+3vs(5+2vs)]ρ̊ +3[57+2vs(8+ vs)]σ
2
J

6(8+ vs)2 . (38)

The conditions can be expressed, alternatively, as Σ̊ < Σs and

16ξ̊
2 >

[
B̊2 + E̊2 +2[1+ vs(3+ vs)]ρ̊−9(55+14vs)Σ̊

2 +6(7+ vs)Σ̊σJ
]
.

Subclasses of the IV-class (A ,ξ )

(A ξ Ω): the assumptions A = 0, ξ = 0 and Ω = 0, lead from equation (7) to the condition C (A ξ ,Ω) :
B = 0. Thus, we analyse the case: (A ξ Ω B), with a rank 7 matrix. The system is unstable if Θ̊ ≤−3(2σJ +

(vs−5)Σ̊)/4(7+ vs).

The case A = 0, T = 0, and Q = 0.

(A T QΦ): in this special case we assume the radial acceleration to be zero. In addition, the expansion
of the 2-sheet Φ vanishes and also Σ =Θ = 0. It is worth noting that the assumption A = Σ =Θ = Φ = 0
implies from equation (6) that ξ Ω = 0 —that is, the twist of the 2-sheet ξ together with the magnetic part of
the Weyl tensor vanish. This system can only accelerate in the radial direction or otherwise radially projected
vorticity will vanish. The basic assumptions in this case directly lead to Ω̇ = 0, ξ̇ = B/2 and the conditions
C (A ,T ) and C (A ,Q) hold. Thus, two subcases occur:

(i) (A T QΦ ξ B): in this case one further has Ḃ = Ω̇ = 0, Ė = − j. The only non zero eigenvalue is
λ =−σJ .

(ii) (A T QΦ Ω): in this case, it can be shown that the trace of the reduced matrix TrB̊ = −σJ < 0
and this system has a zero eigenvalue. Nevertheless, in this case the conditions C (A ,T,Ω) and C (A ,Q)
are B2 + E2 + 2E = −

(
p+ ρ

3

)
< 0. These conditions are inconsistent with the kind of equation of state

considered in this work. We notice that this situation always occurs when the two conditions C (A ,T,Ω) and
C (A ,Q) must be satisfied simultaneously.

(A T Qξ ): in this case the problem is simplified considerably and we find the relations C (A ,ξ ),
C (A ,T ) and C (A ,Q). Moreover, one has that Ė =− j. The evolution equations Ḃ = 0, Ḃ = 0, Ω̇ = 0, and
Φ̇ = 0 give rise to repeated zero eigenvalues. In addition, one has the eigenvalue λ =−σJ < 0.

(A T QΩ): in this case one readily has that Φ̇ = 0. The associated rank 5 matrix has a zero eigenvalue
with multiplicity 2. In addition, one has that c6 = TrB̊ = −σJ < 0. Thus, imposing the condition c6c7 > 0
leads to ξ̊ 2 >−(B̊2+ E̊2+3E̊ )/26. However, in this case the relations C (A ,T,Ω) and C (A ,Q) hold. These
cannot be satisfied for ordinary matter density (i.e. such that ρ > 0) and the given equation of state.

The case A = 0, T = 0, ξ = 0.

(A T ξ Ω): the assumptions A = 0, ξ = 0 and Ω = 0 lead using equation (7) to B = 0. From equation
(9) one obtains the conditions C (A ,T,Ω), and Φ̇ = Ḃ = 0. Thus, we analyse the system (A T ξ Ω B). There
is a zero eigenvalue with multiplicity 3. In addition, one has λ1 =−σJ < 0 and

λ± =
1
4
(−(3+ vs) ˚3Σ ±

√
8(1+ vs)2ρ̊ +(vs−1)2( ˚3Σ)2).

The condition λ± < 0 is satisfied for

Σ̊ > 2(1+ vs)

√
ρ̊/(3(vs +5+2

√
3)(vs +5−2

√
3)).

The case A = 0, Q = 0, ξ = 0.

(A Qξ Ω): this case reduces to (A Qξ Ω B) with C (A ,Q). From the trace of the associated rank 6
matrix we infer that the system is unstable if Σ̊ ≥ Σs ≡ σJ/3(6+ vs). On the other hand, if the system is
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stable, then the following conditions must be verified: (a) E̊ > E̊p with T̊ >−3Σs, or (b) E̊ ≤ E̊p and T̊ > T̊p
where we introduced the following notation

E̊p ≡
1

6(6+ vs)2

[
4(6+ vs)

2[2+3vs(2+ vs)]ρ̊ +3[61+4vs(6+ vs)]σ
2
J
]
, (39)

T̊p ≡
1

177+60vs

[
−6(5+ vs)σJ +

√
6{(59+20vs).

[
2(2+3vs(2+ vs)]ρ̊−3E̊

)
+6(5+ vs)

2
σ

2
J

}1/2
]
.

This condition corresponds to the requirements c4 > 0 and TrB̊ < 0 arising, in turn, from c5 =−TrB̊ > 0 and
c4c5 > 0.

The case A = 0, Φ = 0 and ξ = 0. The case (A Φ ξ Ω) reduces to (A Φ ξ Ω B). We can say that the rank
6 system is unstable when Θ̊ ≤ 3(5Σ̊ −2σJ)/2(14+3vs).

The case A = 0, T = 0, Q = 0 and ξ = 0 In this case one has (A T Qξ Ω) which reduces to (A T Qξ Ω B).
This system is characterized by Φ̇ = 0, Ḃ = 0, Ė = − j. There are the eigenvalues λ = 0 with multiplicity 4
and λ1 =−σJ < 0. Nevertheless, one has that C (A ,T,Ω) and C (A ,Q. These conditions cannot be satisfied
by the assumptions ρ > 0 and the given equation of state.

B Remarks on the thermodynamical quantities

In the present article we consider a one species fluid (simple fluid), and denote, respectively, by n, s, T the
particle number density, the entropy per particle and the absolute temperature as measured by comoving
observers. We also introduce the volume per particle v and the energy per particle e via the relations v≡ 1/n
and e≡ ρ/n. In terms of these variables the first law of Thermodynamics, de =−pdv+T ds, takes the form

dρ =
p+ρ

n
dn+nT ds. (40)

Assuming an equation of state of the form ρ = f (n,s)≥ 0, one obtains from equation (40) that

p(n,s) = n
(

∂ρ

∂n

)
s
−ρ(n,s), T (n,s) =

1
ρ

(
∂ρ

∂ s

)
n
. (41)

Assuming that ∂ p/∂ρ > 0 we define the speed of sound νs = νs(n,s) by

ν
2
s ≡

(
∂ p
∂ρ

)
s
=

n
ρ + p

∂ p
∂n

> 0. (42)

Since we are not considering particle annihilation or creation processes we consider the equation of conser-
vation of particle number:

ua
∇an+n∇aua = 0. (43)

Combining this equation with the conservation equations and (40) we obtain

ua
∇as =

1
nT

ubF c
b ∇

aFac. (44)

When n is subject to equation (43) and T is given by equation (41), using the 1+ 1+ 2 decomposition in a
LRS one obtains the equations

ṡ =+
1

nT
E j, ṅ+nΘ = 0. (45)

The case of an infinitely conducting plasma describes an adiabatic flow —that is, ua∇as = 0, so that the
entropy per particle is conserved along the flow lines. A particular case of interest is when s is a constant in
both space and time. In this case the equation of state can be given in the form p = p(ρ). In the following,
for convenience, it is assumed that ∇a p = vs∇aρ , where we have defined vs ≡ ν2

s . In this article, we have
set the evolution equations and constraints for a general system. However, in a first analysis of stability, we
have preferred to simplify the system in order to obtain some general intuition. Thus, in the study of the
stability problem we have restricted to situations for which d p/ρ ≈ constant at each order. Hence, one has
v̂s = 0 and v̇s = 0. For the more general case of a non-isentropic fluid, i.e. s 6=constant, the equation of state
should be written in the form p = p(ρ,s) —see [10]. This means that when considering the derivatives of the
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pressure p, it should be taken into account that ∇a p = vs∇aρ +(∂ p/∂ s)∇as. The evolution equations under
consideration contain terms involving ∇avs and ∇as. Some general considerations for the case vs =constant
in systems such as accretion disks, neutron stars or some cosmological models can be found, for example, in
[49,48,50,51,52]. In the special case of a polytropic equation of state, where p = κργ , and the constant γ is
the polytropic index while κ > 0 is a constant, the condition vs =constant (i.e. ∇avs = 0) can be realized for
γ = 1 or ρ =constant. The case of an isothermal equation of state (γ = 1) has been discussed for example in
[48,49].
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