201 research outputs found

    Changes in tail posture detected by a 3D machine vision system are associated with injury from damaging behaviours and ill health on commercial pig farms

    Get PDF
    To establish whether pig tail posture is affected by injuries and ill health, a machine vision system using 3D cameras to measure tail angle was used. Camera data from 1692 pigs in 41 production batches of 42.4 (±16.6) days in length over 17 months at seven diverse grower/finisher commercial pig farms, was validated by visiting farms every 14(±10) days to score injury and ill health. Linear modelling of tail posture found considerable farm and batch effects. The percentage of tails held low (0°) or mid (1–45°) decreased over time from 54.9% and 23.8% respectively by -0.16 and -0.05%/day, while tails high (45–90°) increased from 21.5% by 0.20%/day. Although 22% of scored pigs had scratched tails, severe tail biting was rare; only 6% had tail wounds and 5% partial tail loss. Adding tail injury to models showed associations with tail posture: overall tail injury, worsening tail injury, and tail loss were associated with more pigs detected with low tail posture and fewer with high tails. Minor tail injuries and tail swelling were also associated with altered tail posture. Unexpectedly, other health and injury scores had a larger effect on tail posture- more low tails were observed when a greater proportion of pigs in a pen were scored with lameness or lesions caused by social aggression. Ear injuries were linked with reduced high tails. These findings are consistent with the idea that low tail posture could be a general indicator of poor welfare. However, effects of flank biting and ocular discharge on tail posture were not consistent with this. Our results show for the first time that perturbations in the normal time trends of tail posture are associated with tail biting and other signs of adverse health/welfare at diverse commercial farms, forming the basis for a decision support system

    Combined In Silico, In Vivo, and In Vitro Studies Shed Insights into the Acute Inflammatory Response in Middle-Aged Mice

    Get PDF
    We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2-/NO3- data from "middle-aged" (6-8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for "young" (2-3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging. © 2013 Namas et al

    Using role-play to improve students’ confidence and perceptions of communication in a simulated volcanic crisis

    Get PDF
    Traditional teaching of volcanic science typically emphasises scientific principles and tends to omit the key roles, responsibilities, protocols, and communication needs that accompany volcanic crises. This chapter provides a foundation in instructional communication, education, and risk and crisis communication research that identifies the need for authentic challenges in higher education to challenge learners and provide opportunities to practice crisis communication in real-time. We present an authentic, immersive role-play called the Volcanic Hazards Simulation that is an example of a teaching resource designed to match professional competencies. The role-play engages students in volcanic crisis concepts while simultaneously improving their confidence and perceptions of communicating science. During the role-play, students assume authentic roles and responsibilities of professionals and communicate through interdisciplinary team discussions, media releases, and press conferences. We characterised and measured the students’ confidence and perceptions of volcanic crisis communication using a mixed methods research design to determine if the role-play was effective at improving these qualities. Results showed that there was a statistically significant improvement in both communication confidence and perceptions of science communication. The exercise was most effective in transforming low-confidence and low-perception students, with some negative changes measured for our higher-learners. Additionally, students reported a comprehensive and diverse set of best practices but focussed primarily on the mechanics of science communication delivery. This curriculum is a successful example of how to improve students’ communication confidence and perceptions

    MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors

    Get PDF
    Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798

    Cross-Serotype Immunity Induced by Immunization with a Conserved Rhinovirus Capsid Protein

    Get PDF
    Human rhinovirus (RV) infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2) capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine

    Variants in Neuropeptide Y Receptor 1 and 5 Are Associated with Nutrient-Specific Food Intake and Are Under Recent Selection in Europeans

    Get PDF
    There is a large variation in caloric intake and macronutrient preference between individuals and between ethnic groups, and these food intake patterns show a strong heritability. The transition to new food sources during the agriculture revolution around 11,000 years ago probably created selective pressure and shaped the genome of modern humans. One major player in energy homeostasis is the appetite-stimulating hormone neuropeptide Y, in which the stimulatory capacity may be mediated by the neuropeptide Y receptors 1, 2 and 5 (NPY1R, NPY2R and NPY5R). We assess association between variants in the NPY1R, NPY2R and NPY5R genes and nutrient intake in a cross-sectional, single-center study of 400 men aged 40 to 80 years, and we examine whether genomic regions containing these genes show signatures of recent selection in 270 HapMap individuals (90 Africans, 90 Asians, and 90 Caucasians) and in 846 Dutch bloodbank controls. Our results show that derived alleles in NPY1R and NPY5R are associated with lower carbohydrate intake, mainly because of a lower consumption of mono- and disaccharides. We also show that carriers of these derived alleles, on average, consume meals with a lower glycemic index and glycemic load and have higher alcohol consumption. One of these variants shows the hallmark of recent selection in Europe. Our data suggest that lower carbohydrate intake, consuming meals with a low glycemic index and glycemic load, and/or higher alcohol consumption, gave a survival advantage in Europeans since the agricultural revolution. This advantage could lie in overall health benefits, because lower carbohydrate intake, consuming meals with a low GI and GL, and/or higher alcohol consumption, are known to be associated with a lower risk of chronic diseases

    Exploring CRM effectiveness: an institutional theory perspective

    Get PDF
    This study identifies the potential contribution that institutional theory can make to understanding the success of marketing practices. Based on institutional theory, we argue that the effectiveness of marketing practices decreases when firms are motivated to adopt such practices under the influence of institutional pressures originating in firms' environments. However, alignment between a practice and a firm's marketing strategy may buffer against these negative effects. We apply these insights to the case of customer relationship management (CRM). CRM is considered an important way to enhance customer loyalty and firm performance, but it has also been criticized for being expensive and for not living up to expectations. Empirical data from 107 organizations confirm that, in general, adopting CRM for mimetic motives is likely to result in fewer customer insights as a result of using this practice. Our study suggests that institutional theory has much to offer to the investigation of the effectiveness of marketing practices

    Boundary stress-energy tensor and Newton-Cartan geometry in Lifshitz holography

    Get PDF
    For a specific action supporting z = 2 Lifshitz geometries we identify the Lifshitz UV completion by solving for the most general solution near the Lifshitz boundary. We identify all the sources as leading components of bulk fields which requires a vielbein formalism. This includes two linear combinations of the bulk gauge field and timelike vielbein where one asymptotes to the boundary timelike vielbein and the other to the boundary gauge field. The geometry induced from the bulk onto the boundary is a novel extension of Newton-Cartan geometry that we call torsional Newton-Cartan (TNC) geometry. There is a constraint on the sources but its pairing with a Ward identity allows one to reduce the variation of the on-shell action to unconstrained sources. We compute all the vevs along with their Ward identities and derive conditions for the boundary theory to admit conserved currents obtained by contracting the boundary stress-energy tensor with a TNC analogue of a conformal Killing vector. We also obtain the anisotropic Weyl anomaly that takes the form of a Hořava-Lifshitz action defined on a TNC geometry. The Fefferman-Graham expansion contains a free function that does not appear in the variation of the on-shell action. We show that this is related to an irrelevant deformation that selects between two different UV completions

    Phototrophic biofilms and their potential applications

    Get PDF
    Phototrophic biofilms occur on surfaces exposed to light in a range of terrestrial and aquatic environments. Oxygenic phototrophs like diatoms, green algae, and cyanobacteria are the major primary producers that generate energy and reduce carbon dioxide, providing the system with organic substrates and oxygen. Photosynthesis fuels processes and conversions in the total biofilm community, including the metabolism of heterotrophic organisms. A matrix of polymeric substances secreted by phototrophs and heterotrophs enhances the attachment of the biofilm community. This review discusses the actual and potential applications of phototrophic biofilms in wastewater treatment, bioremediation, fish-feed production, biohydrogen production, and soil improvement
    corecore